U. Cnrs, /. Mnhn, and M. National, Histoire Naturelle, 57 rue Cuvier, IBPS), 9 Quai Saint Bernard, p.75005

R. Bloodgood, From Central to Rudimentary to Primary: The History of an Underappreciated Organelle Whose Time Has Come.The Primary Cilium, Methods Cell Biol, vol.94, pp.3-52, 2009.
DOI : 10.1016/S0091-679X(08)94001-2

K. Kozminski, K. Johnson, P. Forscher, and J. Rosenbaum, A motility in the eukaryotic flagellum unrelated to flagellar beating., Proceedings of the National Academy of Sciences, vol.90, issue.12, pp.5519-5523, 1993.
DOI : 10.1073/pnas.90.12.5519

D. Cole, D. Diener, A. Himelblau, P. Beech, J. Fuster et al., Sensory Neurons, The Journal of Cell Biology, vol.47, issue.4, pp.993-1008, 1998.
DOI : 10.1073/pnas.93.16.8443

G. Pazour, B. Dickert, Y. Vucica, E. Seeley, J. Rosenbaum et al., 737, Are Required for Assembly of Cilia and Flagella, The Journal of Cell Biology, vol.150, issue.3, pp.709-718, 2000.
DOI : 10.1083/jcb.129.1.169

H. Qin, J. Rosenbaum, and M. Barr, An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons, Current Biology, vol.11, issue.6, pp.457-461, 2001.
DOI : 10.1016/S0960-9822(01)00122-1

M. Barr and P. Sternberg, A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans, Nature, vol.78, issue.6751, pp.386-389, 1999.
DOI : 10.1038/43913

C. Haycraft, P. Swoboda, P. Taulman, J. Thomas, and B. Yoder, The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms, Development, vol.128, issue.9, pp.1493-1505, 2001.

B. Afzelius, A human syndrome caused by immotile cilia, Science, vol.193, issue.4250, pp.317-319, 1976.
DOI : 10.1126/science.1084576

H. Hamada and P. Tam, Mechanisms of left-right asymmetry and patterning: driver, mediator and responder, F1000Prime Reports, vol.6, p.110, 2014.
DOI : 10.12703/P6-110

J. Mcgrath, S. Somlo, S. Makova, X. Tian, and M. Brueckner, Two Populations of Node Monocilia Initiate Left-Right Asymmetry in the Mouse, Cell, vol.114, issue.1, pp.61-73, 2003.
DOI : 10.1016/S0092-8674(03)00511-7

C. Diggle, D. Moore, G. Mali, P. Zur-lage, A. Ait-lounis et al., HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus, PLoS Genetics, vol.68, issue.9, p.1004577, 2014.
DOI : 10.1371/journal.pgen.1004577.s013

D. Moore, A. Onoufriadis, A. Shoemark, M. Simpson, P. Zur-lage et al., Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia, The American Journal of Human Genetics, vol.93, issue.2, pp.346-356, 2013.
DOI : 10.1016/j.ajhg.2013.07.009

A. Jord, A. Lemaitre, A. Delgehyr, N. Faucourt, M. Spassky et al., Centriole amplification by mother and daughter centrioles differs in multiciliated cells, Nature, vol.516, issue.7529, pp.104-107, 2014.

J. Wallmeier, D. Mutairi, C. Chen, N. Loges, P. Pennekamp et al., Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia, Nature Genetics, vol.140, issue.6, pp.646-651, 2014.
DOI : 10.1038/ng.2961

M. Boon, J. Wallmeier, L. Ma, N. Loges, M. Jaspers et al., MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia, Nature Communications, vol.37, p.4418, 2014.
DOI : 10.1164/rccm.200411-1583OC

F. Newton, P. Zur-lage, S. Karak, D. Moore, M. Gopfert et al., Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization, Developmental Cell, vol.22, issue.6, pp.1221-1233, 2012.
DOI : 10.1016/j.devcel.2012.05.010

C. Clement, K. Ajbro, K. Koefoed, M. Vestergaard, I. Veland et al., TGF-?? Signaling Is Associated with Endocytosis at the Pocket Region of the Primary Cilium, Cell Reports, vol.3, issue.6, pp.1806-1814, 2013.
DOI : 10.1016/j.celrep.2013.05.020

J. Gerdes, S. Christou-savina, Y. Xiong, T. Moede, N. Moruzzi et al., Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents, Nature Communications, vol.7, p.5308, 2014.
DOI : 10.1016/j.cmet.2005.03.007

D. Huangfu, A. Liu, A. Rakeman, N. Murcia, L. Niswander et al., Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature, vol.426, issue.6962, pp.83-87, 2003.
DOI : 10.1038/nature02061

A. Kuzhandaivel, S. Schultz, and L. Alkhori, Cilia-Mediated Hedgehog Signaling in Drosophila, Cell Reports, vol.7, issue.3, pp.672-680
DOI : 10.1016/j.celrep.2014.03.052

URL : http://doi.org/10.1016/j.celrep.2014.03.052

R. Shaheen, M. Schmidts, E. Faqeih, A. Hashem, E. Lausch et al., A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies, Human Molecular Genetics, vol.24, issue.5, pp.1410-1419, 2014.
DOI : 10.1093/hmg/ddu555

M. Schmidts, V. Frank, T. Eisenberger, A. Turki, S. Bizet et al., in Skeletal Ciliopathies with Early Progressive Kidney Disease, Human Mutation, vol.179, issue.Suppl 1, pp.714-724, 2013.
DOI : 10.1002/humu.22294

I. Perrault, S. Saunier, S. Hanein, E. Filhol, A. Bizet et al., Mainzer-Saldino Syndrome Is a Ciliopathy Caused by IFT140 Mutations, The American Journal of Human Genetics, vol.90, issue.5, pp.864-870, 2012.
DOI : 10.1016/j.ajhg.2012.03.006

URL : https://hal.archives-ouvertes.fr/inserm-00752958

M. Failler, H. Gee, P. Krug, K. Joo, J. Halbritter et al., Mutations of CEP83 Cause Infantile Nephronophthisis and Intellectual Disability, The American Journal of Human Genetics, vol.94, issue.6, pp.905-914, 2014.
DOI : 10.1016/j.ajhg.2014.05.002

G. Slaats, A. Ghosh, L. Falke, L. Corre, S. Shaltiel et al., Nephronophthisis-Associated CEP164 Regulates Cell Cycle Progression, Apoptosis and Epithelial-to-Mesenchymal Transition, PLoS Genetics, vol.102, issue.10, p.1004594, 2014.
DOI : 10.1371/journal.pgen.1004594.s008

URL : http://doi.org/10.1371/journal.pgen.1004594

K. Tory, T. Lacoste, L. Burglen, V. Moriniere, N. Boddaert et al., High NPHP1 and NPHP6 Mutation Rate in Patients with Joubert Syndrome and Nephronophthisis: Potential Epistatic Effect of NPHP6 and AHI1 Mutations in Patients with NPHP1 Mutations, Journal of the American Society of Nephrology, vol.18, issue.5, pp.1566-1575, 2007.
DOI : 10.1681/ASN.2006101164

A. Hynes, R. Giles, S. Srivastava, L. Eley, J. Whitehead et al., Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis, Proceedings of the National Academy of Sciences, vol.111, issue.27, pp.9893-9898, 2014.
DOI : 10.1038/nmeth.2019

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103340

K. Renkema, M. Stokman, R. Giles, and N. Knoers, Next-generation sequencing for research and diagnostics in kidney disease, Nature Reviews Nephrology, vol.93, issue.8, pp.433-444, 2014.
DOI : 10.1038/nrneph.2014.95

J. Bennett, M. Ashtari, J. Wellman, K. Marshall, L. Cyckowski et al., AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness, Science Translational Medicine, vol.26, issue.8, pp.120-115, 2012.
DOI : 10.1089/aid.2009.0242

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169122

E. West, A. Gonzalez-cordero, C. Hippert, F. Osakada, J. Martinez-barbera et al., Defining the Integration Capacity of Embryonic Stem Cell-Derived Photoreceptor Precursors, STEM CELLS, vol.19, issue.7, pp.1424-1435, 2012.
DOI : 10.1002/stem.1123

J. Van-reeuwijk, H. Arts, and R. Roepman, Scrutinizing ciliopathies by unraveling ciliary interaction networks, Human Molecular Genetics, vol.20, issue.R2, pp.149-157, 2011.
DOI : 10.1093/hmg/ddr354

I. Gibbons and A. Rowe, Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia, Science, vol.149, issue.3682, pp.424-426, 1965.
DOI : 10.1126/science.149.3682.424

M. Ferguson, S. Homans, R. Dwek, and T. Rademacher, Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane, Science, vol.2394841, issue.1, pp.753-759, 1988.
DOI : 10.1126/science.3340856

G. Langousis and K. Hill, Motility and more: the flagellum of Trypanosoma brucei, Nature Reviews Microbiology, vol.94, issue.7, pp.505-518, 2014.
DOI : 10.1242/jcs.117069

F. Moreira-leite, T. Sherwin, L. Kohl, and K. Gull, A Trypanosome Structure Involved in Transmitting Cytoplasmic Information During Cell Division, Science, vol.294, issue.5542, pp.610-612, 2001.
DOI : 10.1126/science.1063775

R. Sharma, L. Peacock, E. Gluenz, K. Gull, W. Gibson et al., Asymmetric Cell Division as a Route to Reduction in Cell Length and Change in Cell Morphology in Trypanosomes, Protist, vol.159, issue.1, pp.137-151, 2008.
DOI : 10.1016/j.protis.2007.07.004

B. Rotureau, I. Subota, J. Buisson, and P. Bastin, A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly, Development, vol.139, issue.10, pp.1842-1850, 2012.
DOI : 10.1242/dev.072611

URL : https://hal.archives-ouvertes.fr/pasteur-01371317

S. Kurup and R. Tarleton, The Trypanosoma cruzi Flagellum Is Discarded via Asymmetric Cell Division following Invasion and Provides Early Targets for Protective CD8+ T Cells, Cell Host & Microbe, vol.16, issue.4, pp.439-449, 2014.
DOI : 10.1016/j.chom.2014.09.003

R. Sinden, A. Talman, S. Marques, M. Wass, and M. Sternberg, The flagellum in malarial parasites, Current Opinion in Microbiology, vol.13, issue.4, pp.491-500, 2010.
DOI : 10.1016/j.mib.2010.05.016

S. Marques, C. Ramakrishnan, R. Carzaniga, A. Blagborough, M. Delves et al., male gamete development and malaria transmission, Cellular Microbiology, vol.22, issue.2, pp.191-206, 2014.
DOI : 10.1111/cmi.12355

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441282

L. Von-tobel, T. Mikeladze-dvali, M. Delattre, F. Balestra, S. Blanchoud et al., SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans, PLoS Genetics, vol.5, issue.11, p.1004777, 2014.
DOI : 10.1371/journal.pgen.1004777.s017

C. Thauvin-robinet, J. Lee, E. Lopez, V. Herranz-perez, T. Shida et al., The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation, Nature Genetics, vol.113, issue.8, pp.905-911, 2014.
DOI : 10.1038/nmeth.2019

A. Pitaval, Q. Tseng, M. Bornens, and M. Thery, Cell shape and contractility regulate ciliogenesis in cell cycle???arrested cells, The Journal of Cell Biology, vol.26, issue.2, pp.303-312, 2010.
DOI : 10.1083/jcb.201004003.dv

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958475

M. Kim, M. Kim, M. Lee, C. Kim, and D. Lim, The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis, Nature Communications, vol.5, p.5370, 2014.
DOI : 10.1158/0008-5472.CAN-08-3984

S. Kuhns, K. Schmidt, J. Reymann, D. Gilbert, A. Neuner et al., The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis, The Journal of Cell Biology, vol.3, issue.4, pp.505-522, 2013.
DOI : 10.1083/jcb.200703047

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575539

R. Ghossoub, Q. Hu, M. Failler, M. Rouyez, B. Spitzbarth et al., Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length, Journal of Cell Science, vol.126, issue.12, pp.2583-2594, 2013.
DOI : 10.1242/jcs.111377

G. Pigino, S. Geimer, S. Lanzavecchia, E. Paccagnini, F. Cantele et al., Electron-tomographic analysis of intraflagellar transport particle trains in situ, The Journal of Cell Biology, vol.254, issue.1, pp.135-148, 2009.
DOI : 10.1006/jsbi.1997.3934

K. Kozminski, P. Beech, and J. Rosenbaum, The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane, The Journal of Cell Biology, vol.131, issue.6, pp.1517-1527, 1995.
DOI : 10.1083/jcb.131.6.1517

B. Morga and P. Bastin, Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences, Cilia, vol.2, issue.1, p.16, 2013.
DOI : 10.1111/j.1462-5822.2010.01566.x

URL : https://hal.archives-ouvertes.fr/pasteur-00911797

J. Buisson, N. Chenouard, T. Lagache, T. Blisnick, J. Olivo-marin et al., Intraflagellar transport proteins cycle between the flagellum and its base, Journal of Cell Science, vol.126, issue.1, pp.327-338, 2013.
DOI : 10.1242/jcs.117069

R. Patel-king, R. Gilberti, E. Hom, and S. King, WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia, Molecular Biology of the Cell, vol.24, issue.17, pp.2668-2677, 2013.
DOI : 10.1091/mbc.E13-05-0266

T. Eguether, S. Agustin, J. Keady, B. Jonassen, J. Liang et al., IFT27 Links the BBSome to IFT for Maintenance of the Ciliary Signaling Compartment, Developmental Cell, vol.31, issue.3, pp.279-290, 2014.
DOI : 10.1016/j.devcel.2014.09.011

G. Liew, F. Ye, A. Nager, J. Murphy, J. Lee et al., The Intraflagellar Transport Protein IFT27 Promotes BBSome Exit from Cilia through the GTPase ARL6/BBS3, Developmental Cell, vol.31, issue.3, pp.265-278, 2014.
DOI : 10.1016/j.devcel.2014.09.004

URL : http://doi.org/10.1016/j.devcel.2014.09.004

M. Taschner, F. Kotsis, P. Braeuer, E. Kuehn, and E. Lorentzen, Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly, The Journal of Cell Biology, vol.101, issue.2, pp.269-282, 2014.
DOI : 10.1083/jcb.201408002.dv

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210449

S. Bhogaraju, K. Weber, B. Engel, K. Lechtreck, and E. Lorentzen, Getting tubulin to the tip of the cilium: One IFT train, many different tubulin cargo-binding sites?, BioEssays, vol.278, issue.5, pp.463-467, 2014.
DOI : 10.1002/bies.201400007

J. Craft, J. Harris, S. Hyman, P. Kner, and K. Lechtreck, Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism, The Journal of Cell Biology, vol.115, issue.2, pp.223-237, 2015.
DOI : 10.7554/eLife.00654

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298693

J. Panizzi, A. Becker-heck, V. Castleman, D. Mutairi, Y. Liu et al., CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms, Nature Genetics, vol.47, issue.6, pp.714-719, 2012.
DOI : 10.1242/dev.01772

H. Ueno, K. Bui, T. Ishikawa, Y. Imai, T. Yamaguchi et al., Structure of dimeric axonemal dynein in cilia suggests an alternative mechanism of force generation, Cytoskeleton, vol.303, issue.7, pp.412-422, 2014.
DOI : 10.1002/cm.21180

T. Ikeda, K. Ikeda, M. Enomoto, M. Park, M. Hirono et al., The mouse ortholog of EFHC1 implicated in juvenile myoclonic epilepsy is an axonemal protein widely conserved among organisms with motile cilia and flagella, FEBS Letters, vol.101, issue.3, pp.819-822, 2005.
DOI : 10.1016/j.febslet.2004.12.070

S. Shaham, Chemosensory organs as models of neuronal synapses, Nature Reviews Neuroscience, vol.158, issue.3, pp.212-217, 2010.
DOI : 10.1038/nrn2740

D. Takao, J. Dishinger, H. Kee, J. Pinskey, B. Allen et al., An Assay for Clogging the Ciliary Pore Complex Distinguishes Mechanisms of Cytosolic and Membrane Protein Entry, Current Biology, vol.24, issue.19, pp.2288-2294, 2014.
DOI : 10.1016/j.cub.2014.08.012