A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1010, 2004.
DOI : 10.1126/science.1093133

S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes - from electrical signals to organelle transfer, Journal of Cell Science, vol.125, issue.5, pp.1089-1098, 2012.
DOI : 10.1242/jcs.083279

URL : https://hal.archives-ouvertes.fr/pasteur-00716392

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted Roles of Tunneling Nanotubes in Intercellular Communication, Frontiers in Physiology, vol.3, issue.72, p.72, 2012.
DOI : 10.3389/fphys.2012.00072

URL : https://hal.archives-ouvertes.fr/pasteur-00716379

H. R. Chinnery, E. Pearlman, and P. G. Mcmenamin, Cells in the Mouse Cornea, The Journal of Immunology, vol.180, issue.9, pp.5779-5783, 2008.
DOI : 10.4049/jimmunol.180.9.5779

E. Lou, Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma, PLoS ONE, vol.276, issue.Pt 9, p.33093, 2012.
DOI : 10.1371/journal.pone.0033093.s008

J. Pasquier, Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, Journal of translational medicine, vol.11, issue.94, pp.10-1186, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00828594

Y. Seyed-razavi, M. J. Hickey, L. Kuffova, P. G. Mcmenamin, and H. Chinnery, Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction, Immunology and Cell Biology, vol.48, issue.1, pp.89-9552, 2013.
DOI : 10.1038/icb.2012.52

H. H. Gerdes, A. Rustom, and X. Wang, Tunneling nanotubes, an emerging intercellular communication route in development. Mechanisms of development 130, pp.381-387, 2013.
DOI : 10.1016/j.mod.2012.11.006

URL : http://doi.org/10.1016/j.mod.2012.11.006

M. Hashimoto, Potential Role of the Formation of Tunneling Nanotubes in HIV-1 Spread in Macrophages, The Journal of Immunology, vol.196, issue.4, pp.1832-1841, 2016.
DOI : 10.4049/jimmunol.1500845

S. Sowinski, Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-219, 2008.
DOI : 10.1074/jbc.C400046200

B. Onfelt, Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria, The Journal of Immunology, vol.177, issue.12, pp.8476-8483, 2006.
DOI : 10.4049/jimmunol.177.12.8476

E. Lou, Intercellular conduits in tumours: the new social network, pp.3-5004, 2016.

M. J. Ware, Radiofrequency treatment alters cancer cell phenotype Scientific reports 5, pp.10-1038, 2015.
DOI : 10.1038/srep12083

URL : http://doi.org/10.1038/srep12083

K. Gousset and C. Zurzolo, Tunnelling nanotubes, Prion, vol.121, issue.2, pp.94-98, 2009.
DOI : 10.1371/journal.ppat.1000426

URL : https://hal.archives-ouvertes.fr/pasteur-00406148

C. Langevin, K. Gousset, M. Costanzo, R. Goff, O. Zurzolo et al., Characterization of the role of dendritic cells in prion transfer to primary neurons. The Biochemical journal 431, pp.189-198, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521557

G. S. Victoria, A. Arkhipenko, S. Zhu, S. Syan, and C. Zurzolo, Astrocyte-to-neuron intercellular prion transfer is mediated by cellcell contact, pp.10-1038, 2016.
DOI : 10.1038/srep20762

URL : https://hal.archives-ouvertes.fr/pasteur-01500707

S. Zhu, G. S. Victoria, L. Marzo, R. Ghosh, and C. Zurzolo, Prion aggregates transfer through tunneling nanotubes in endocytic vesicles, Prion, vol.7, issue.2, pp.125-135, 2015.
DOI : 10.1038/nmeth.2075

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601206

M. Costanzo, Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, Journal of Cell Science, vol.126, issue.16, pp.3678-3685, 2013.
DOI : 10.1242/jcs.126086

URL : https://hal.archives-ouvertes.fr/pasteur-00874692

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation. Cell death and differentiation 18, pp.732-742, 2011.
DOI : 10.1038/cdd.2010.147

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131904

S. Abounit, 39632 | DOI: 10 Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes, Scientific RepoRts | The EMBO journal, vol.6, issue.35, pp.2120-2138, 1038.

S. Abounit, J. W. Wu, G. S. Victoria, and C. Zurzolo, Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases, Prion, vol.528, issue.7580, p.1223003, 2016.
DOI : 10.1182/blood-2015-03-634238

M. Costanzo and C. Zurzolo, The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration, Biochemical Journal, vol.452, issue.1, pp.1-17, 2013.
DOI : 10.1042/BJ20121898

URL : https://hal.archives-ouvertes.fr/pasteur-00874678

S. Abounit, E. Delage, C. Zurzolo, S. Juan, and ?. Bonifacino, Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Current protocols in cell biology, pp.11-21, 2015.

N. V. Bukoreshtliev, Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Letters, vol.42, issue.9, pp.1481-1488065, 2009.
DOI : 10.1016/j.febslet.2009.03.065

K. Gousset, Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

K. Hase, M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nature Cell Biology, vol.281, issue.12, pp.1427-1432, 2009.
DOI : 10.1016/j.cell.2006.08.034

C. Schiller, LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation, Journal of Cell Science, vol.126, issue.3, pp.767-777, 2013.
DOI : 10.1242/jcs.114033

A. Takahashi, Tunneling nanotube formation is essential for the regulation of osteoclastogenesis, Journal of Cellular Biochemistry, vol.4, issue.6, pp.1238-1247, 2013.
DOI : 10.1002/jcb.24433

V. Andresen, Tunneling nanotube (TNT) formation is independent of p53 expression. Cell death and differentiation 20, p.61, 2013.
DOI : 10.1038/cdd.2013.61

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705610

K. Gousset, L. Marzo, P. H. Commere, and C. Zurzolo, Myo10 is a key regulator of TNT formation in neuronal cells, Journal of Cell Science, vol.126, issue.19, pp.4424-4435, 2013.
DOI : 10.1242/jcs.129239

URL : https://hal.archives-ouvertes.fr/pasteur-00874699

M. Lokar, A. Iglic, and P. Veranic, Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions, Protoplasma, vol.328, issue.1-4, pp.81-87, 2010.
DOI : 10.1007/s00709-010-0143-7

A. Arjonen, R. Kaukonen, and J. Ivaska, Filopodia and adhesion in cancer cell motility, Cell Adhesion & Migration, vol.11, issue.5, pp.421-430, 2011.
DOI : 10.1186/1471-2164-9-379

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218609

A. B. Bohil, B. W. Robertson, and R. E. Cheney, Myosin-X is a molecular motor that functions in filopodia formation, Proceedings of the National Academy of Sciences, vol.276, issue.29, pp.12411-12416, 2006.
DOI : 10.1074/jbc.M103565200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567893

T. M. Watanabe, H. Tokuo, K. Gonda, H. Higuchi, and M. Ikebe, Myosin-X Induces Filopodia by Multiple Elongation Mechanism, Journal of Biological Chemistry, vol.285, issue.25, p.93864, 2010.
DOI : 10.1074/jbc.M109.093864

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885239

H. Zhang, Myosin-X provides a motor-based link between integrins and the cytoskeleton, Nature Cell Biology, vol.16, issue.6, pp.523-531, 2004.
DOI : 10.1074/jbc.273.22.13878

A. Disanza, CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. The EMBO journal 32, pp.2735-2750208, 2013.

A. M. Chou, K. P. Sem, G. D. Wright, T. Sudhaharan, and S. Ahmed, Dynamin1 Is a Novel Target for IRSp53 Protein and Works with Mammalian Enabled (Mena) Protein and Eps8 to Regulate Filopodial Dynamics, Journal of Biological Chemistry, vol.289, issue.35, pp.24383-24396, 2014.
DOI : 10.1074/jbc.M114.553883

F. Vaggi, The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation, PLoS Computational Biology, vol.22, issue.7, 2011.
DOI : 10.1371/journal.pcbi.1002088.s005

D. J. Kast, Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors, Nature Structural & Molecular Biology, vol.276, issue.4, pp.413-4222781, 2014.
DOI : 10.1038/nsmb.2628

E. Menna, Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF) PLoS biology 7, e1000138, doi: 10, p.1000138, 1371.

P. D. Arkwright, Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes, Cell Research, vol.167, issue.1, pp.72-88112, 2009.
DOI : 10.1038/ni1024

L. Van-aelst and C. Souza-schorey, Rho GTPases and signaling networks, Genes & Development, vol.11, issue.18, pp.2295-2322, 1997.
DOI : 10.1101/gad.11.18.2295

S. Gurke, Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells???, Experimental Cell Research, vol.314, issue.20, pp.3669-3683, 2008.
DOI : 10.1016/j.yexcr.2008.08.022

K. B. Lim, The Cdc42 Effector IRSp53 Generates Filopodia by Coupling Membrane Protrusion with Actin Dynamics, Journal of Biological Chemistry, vol.283, issue.29, pp.20454-20472, 2008.
DOI : 10.1074/jbc.M710185200

C. Schafer, The key feature for early migratory processes, Cell Adhesion & Migration, vol.93, issue.2, pp.215-225, 2010.
DOI : 10.4161/cam.4.2.10745

M. Barzik, L. M. Mcclain, S. L. Gupton, F. B. Gertler, and . Ena, Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function, Molecular Biology of the Cell, vol.25, issue.17, pp.2604-2619, 2014.
DOI : 10.1091/mbc.E14-02-0712

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148250

M. Hertzog, Molecular Basis for the Dual Function of Eps8 on Actin Dynamics: Bundling and Capping, PLoS Biology, vol.25, issue.6, 2010.
DOI : 10.1371/journal.pbio.1000387.s023

A. Biran, Senescent cells communicate via intercellular protein transfer, Genes & Development, vol.29, issue.8, pp.791-802115, 2015.
DOI : 10.1101/gad.259341.115

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403256

D. M. Frei, Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer Scientific reports 5, pp.10-1038, 2015.

D. L. Cunningham, Novel Binding Partners and Differentially Regulated Phosphorylation Sites Clarify Eps8 as a Multi-Functional Adaptor, PLoS ONE, vol.9, issue.4, 2013.
DOI : 10.1371/journal.pone.0061513.s006

URL : http://doi.org/10.1371/journal.pone.0061513

D. Fiore, P. P. Scita, and G. , Eps8 in the midst of GTPases. The international journal of biochemistry & cell biology 34, pp.1178-1183, 2002.

A. Disanza, Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8???IRSp53 complex, Nature Cell Biology, vol.113, issue.12, pp.1337-1347, 2006.
DOI : 10.1038/ncb1304

T. Kanda, K. F. Sullivan, and G. M. Wahl, Histone???GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells, Current Biology, vol.8, issue.7, pp.377-385, 1998.
DOI : 10.1016/S0960-9822(98)70156-3

H. S. Nam and R. Benezra, High Levels of Id1 Expression Define B1 Type Adult Neural Stem Cells, Cell Stem Cell, vol.5, issue.5, pp.515-526017, 2009.
DOI : 10.1016/j.stem.2009.08.017