N. Rastogi, E. Legrand, and C. Sola, The mycobacteria: an introduction to nomenclature and pathogenesis, Revue Scientifique et Technique de l'OIE, vol.20, issue.1, pp.21-54, 2001.
DOI : 10.20506/rst.20.1.1265

B. Springer, L. Stockman, K. Teschner, G. Roberts, and E. Bottger, Two-laboratory collaborative study on identification of mycobacteria: Molecular versus phenotypic methods, Journal of Clinical Microbiology, vol.34, issue.2, pp.296-303, 1996.

B. Springer, W. Wu, T. Bodmer, G. Haase, G. Pfyffer et al., Isolation and characterization of a unique group of slowly growing mycobacteria: Description of Mycobacterium lentiflavum sp nov, Journal of Clinical Microbiology, vol.34, issue.5, pp.1100-1107, 1996.

R. Brosch, S. Gordon, M. Marmiesse, P. Brodin, C. Buchrieser et al., complex, Proceedings of the National Academy of Sciences, vol.350, issue.1, pp.3684-3693, 2002.
DOI : 10.1073/pnas.91.6.2091

H. Esmail, C. Barry, D. Young, and R. Wilkinson, The ongoing challenge of latent tuberculosis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.28, issue.2, p.20130437, 1645.
DOI : 10.1038/nm.2285

M. Behr and P. Small, A historical and molecular phylogeny of BCG strains, Vaccine, vol.17, issue.7-8, pp.915-937, 1999.
DOI : 10.1016/S0264-410X(98)00277-1

R. Brosch, A. Pym, S. Gordon, and S. Cole, The evolution of mycobacterial pathogenicity: clues from comparative genomics, Trends in Microbiology, vol.9, issue.9, pp.452-460, 2001.
DOI : 10.1016/S0966-842X(01)02131-X

G. Mahairas, P. Sabo, M. Hickey, D. Singh, and C. Stover, Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis., Journal of Bacteriology, vol.178, issue.5, pp.1274-82, 1996.
DOI : 10.1128/jb.178.5.1274-1282.1996

G. Tabouret, C. Astarie-dequeker, C. Demangel, W. Malaga, P. Constant et al., Mycobacterium leprae Phenolglycolipid-1 Expressed by Engineered M. bovis BCG Modulates Early Interaction with Human Phagocytes, PLoS Pathogens, vol.5, issue.10, p.1001159, 2010.
DOI : 10.1371/journal.ppat.1001159.s003

URL : https://hal.archives-ouvertes.fr/pasteur-01376090

C. Hoffmann, A. Leis, M. Niederweis, J. Plitzko, and H. Engelhardt, Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure, Proceedings of the National Academy of Sciences, vol.149, issue.3
DOI : 10.1016/j.jsb.2004.10.006

M. Sani, E. Houben, J. Geurtsen, J. Pierson, K. De-punder et al., Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins, PLoS Pathogens, vol.60, issue.3, p.1000794, 2010.
DOI : 10.1371/journal.ppat.1000794.s009

B. Zuber, M. Chami, C. Houssin, J. Dubochet, G. Griffiths et al., Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State, Journal of Bacteriology, vol.190, issue.16, pp.5672-80, 2008.
DOI : 10.1128/JB.01919-07

URL : https://hal.archives-ouvertes.fr/hal-00356505

M. Watanabe, Y. Yamada, K. Iguchi, and D. Minnikin, Structural elucidation of new phenolic glycolipids from Mycobaclerium tuberculosis, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1210, issue.2, pp.174-80, 1994.
DOI : 10.1016/0005-2760(94)90118-X

K. Onwueme, C. Vos, J. Zurita, J. Ferreras, and L. Quadri, The dimycocerosate ester polyketide virulence factors of mycobacteria, Progress in Lipid Research, vol.44, issue.5, pp.259-302, 2005.
DOI : 10.1016/j.plipres.2005.07.001

A. Arbues, G. Lugo-villarino, O. Neyrolles, and C. Guilhot, Astarie-Dequeker C. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids, Front Cell Infect Microbiol, vol.4, p.173, 2014.

L. Guenin-mace, R. Simeone, and C. Demangel, Lipids of Pathogenic Mycobacteria: Contributions to Virulence and Host Immune Suppression, Transboundary and Emerging Diseases, vol.43, issue.6-7, pp.6-7255, 2009.
DOI : 10.1111/j.1865-1682.2009.01072.x

P. Constant, E. Perez, W. Malaga, M. Laneelle, O. Saurel et al., Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of

V. Ng, G. Zanazzi, R. Timpl, J. Talts, J. Salzer et al., Role of the Cell Wall Phenolic Glycolipid-1 in the Peripheral Nerve Predilection of Mycobacterium leprae, Cell, vol.103, issue.3, pp.511-535, 2000.
DOI : 10.1016/S0092-8674(00)00142-2

A. Arbues, W. Malaga, P. Constant, C. Guilhot, J. Prandi et al., Trisaccharides of Phenolic Glycolipids Confer Advantages to Pathogenic Mycobacteria through Manipulation of Host-Cell Pattern-Recognition Receptors, ACS Chemical Biology, vol.11, issue.10, 2016.
DOI : 10.1021/acschembio.6b00568

F. Rosetti and T. Mayadas, The many faces of Mac-1 in autoimmune disease, Immunological Reviews, vol.5, issue.1, pp.175-93, 2016.
DOI : 10.1111/imr.12373

J. Christensen, S. Andreasen, J. Christensen, and A. Thomsen, CD11b expression as a marker to distinguish between recently activated effector CD8+ T cells and memory cells, International Immunology, vol.13, issue.4, pp.593-600, 2001.
DOI : 10.1093/intimm/13.4.593

S. Fiorentini, S. Licenziati, G. Alessandri, F. Castelli, S. Caligaris et al., CD11b Expression Identifies CD8+CD28+ T Lymphocytes with Phenotype and Function of Both Naive/Memory and Effector Cells, The Journal of Immunology, vol.166, issue.2, pp.900-907, 2001.
DOI : 10.4049/jimmunol.166.2.900

A. Erdei, N. Sandor, B. Macsik-valent, S. Lukacsi, M. Kremlitzka et al., The versatile functions of complement C3-derived ligands, Immunological Reviews, vol.84, issue.Suppl 8, pp.127-167, 2016.
DOI : 10.1111/imr.12498

K. Chung, I. Mitroulis, J. Wiessner, Y. Zheng, G. Siegert et al., A novel pathway of rapid TLR-triggered activation of integrin-dependent leukocyte adhesion that requires Rap1 GTPase, Molecular Biology of the Cell, vol.25, issue.19, pp.2948-55, 2014.
DOI : 10.1091/mbc.E14-04-0867

M. Diamond, J. Garcia-aguilar, J. Bickford, A. Corbi, and T. Springer, The I domain is a major recognition site on the leukocyte integrin Mac- 1 (CD11b/CD18) for four distinct adhesion ligands, The Journal of Cell Biology, vol.120, issue.4, pp.1031-1074, 1993.
DOI : 10.1083/jcb.120.4.1031

O. Brien, X. Heflin, K. Lavigne, L. Yu, K. Kim et al., Lectin Site Ligation of CR3 Induces Conformational Changes and Signaling, Journal of Biological Chemistry, vol.287, issue.5, pp.3337-3385, 2012.
DOI : 10.1074/jbc.M111.298307

L. Cabec, V. Carreno, S. Moisand, A. Bordier, C. Maridonneau-parini et al., Complement Receptor 3 (CD11b/CD18) Mediates Type I and Type II Phagocytosis During Nonopsonic and Opsonic Phagocytosis, Respectively, The Journal of Immunology, vol.169, issue.4, pp.2003-2012, 2002.
DOI : 10.4049/jimmunol.169.4.2003

URL : https://hal.archives-ouvertes.fr/hal-00178849

M. Melo, I. Catchpole, G. Haggar, and R. Stokes, Utilization of CD11b Knockout Mice to Characterize the Role of Complement Receptor 3 (CR3, CD11b/CD18) in the Growth of Mycobacterium tuberculosis in Macrophages, Cellular Immunology, vol.205, issue.1, pp.13-23, 2000.
DOI : 10.1006/cimm.2000.1710

L. Schlesinger and M. Horwitz, Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-gamma activation inhibits complement receptor function and phagocytosis of this bacterium, J Immunol, vol.147, issue.6, pp.1983-94, 1991.

K. Sendide, N. Reiner, J. Lee, S. Bourgoin, A. Talal et al., Cross-Talk between CD14 and Complement Receptor 3 Promotes Phagocytosis of Mycobacteria: Regulation by Phosphatidylinositol 3-Kinase and Cytohesin-1, The Journal of Immunology, vol.174, issue.7, pp.4210-4219, 2005.
DOI : 10.4049/jimmunol.174.7.4210

R. Adachi, K. Suzuki, and . Lyn, Lyn, one of the Src-family tyrosine kinases expressed in phagocytes, plays an important role in??2 integrin-signalling pathways in opsonized zymosan-activated macrophage-like U937 cells, Cell Biochemistry and Function, vol.13, issue.3, pp.323-356, 2007.
DOI : 10.1002/cbf.1393

I. Saraav, S. Singh, and S. Sharma, Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion?, Immunology and Cell Biology, vol.29, issue.9, pp.741-747, 2014.
DOI : 10.4049/jimmunol.0904005

M. Drennan, D. Nicolle, V. Quesniaux, M. Jacobs, A. N. Mpagi et al., Toll-Like Receptor 2-Deficient Mice Succumb to Mycobacterium tuberculosis Infection, The American Journal of Pathology, vol.164, issue.1, pp.49-57, 2004.
DOI : 10.1016/S0002-9440(10)63095-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1602241

A. Ogus, B. Yoldas, T. Ozdemir, A. Uguz, S. Olcen et al., The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease, European Respiratory Journal, vol.23, issue.2, pp.219-242, 2004.
DOI : 10.1183/09031936.03.00061703

M. Ben-ali, M. Barbouche, S. Bousnina, A. Chabbou, and K. Dellagi, Toll-Like Receptor 2 Arg677Trp Polymorphism Is Associated with Susceptibility to Tuberculosis in Tunisian Patients, Clinical and Vaccine Immunology, vol.11, issue.3, pp.625-631, 2004.
DOI : 10.1128/CDLI.11.3.625-626.2004

URL : https://hal.archives-ouvertes.fr/pasteur-00875161

B. Abel, N. Thieblemont, V. Quesniaux, N. Brown, J. Mpagi et al., Toll-Like Receptor 4 Expression Is Required to Control Chronic Mycobacterium tuberculosis Infection in Mice, The Journal of Immunology, vol.169, issue.6, pp.3155-62, 2002.
DOI : 10.4049/jimmunol.169.6.3155

URL : https://hal.archives-ouvertes.fr/hal-00095132

A. Polycarpou, M. Holland, I. Karageorgiou, A. Eddaoudi, S. Walker et al., Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination, Frontiers in Cellular and Infection Microbiology, vol.73, issue.145, p.72, 2016.
DOI : 10.1128/IAI.73.5.2940-2950.2005

URL : http://doi.org/10.3389/fcimb.2016.00072

S. Krutzik, M. Ochoa, P. Sieling, S. Uematsu, Y. Ng et al., Activation and regulation of Toll-like receptors 2 and 1 in human leprosy, Nature Medicine, vol.9, issue.5, pp.525-557, 2003.
DOI : 10.1038/nm864

T. Kawai and S. Akira, Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity, Immunity, vol.34, issue.5, pp.637-50, 2011.
DOI : 10.1016/j.immuni.2011.05.006

S. Akira and K. Takeda, Toll-like receptor signalling, Nature Reviews Immunology, vol.303, issue.7, pp.499-511, 2004.
DOI : 10.1038/nri1391

R. Noyce, S. Collins, and K. Mossman, Differential Modification of Interferon Regulatory Factor 3 following Virus Particle Entry, Journal of Virology, vol.83, issue.9, pp.4013-4035, 2009.
DOI : 10.1128/JVI.02069-08

O. Neill, L. Golenbock, D. Bowie, and A. , The history of Toll-like receptors ??? redefining innate immunity, Nature Reviews Immunology, vol.470, issue.6, pp.453-60, 2013.
DOI : 10.1038/nri3446

K. Hoebe, X. Du, P. Georgel, E. Janssen, K. Tabeta et al., Identification of Lps2 as a key transducer of MyD88-independent TIR signalling, Nature, vol.424, issue.6950, pp.743-751, 2003.
DOI : 10.1038/nature01889

K. Hoebe, E. Janssen, S. Kim, L. Alexopoulou, R. Flavell et al., Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways, Nature Immunology, vol.4, issue.12, pp.1223-1232, 2003.
DOI : 10.1038/ni1010

C. Fremond, V. Yeremeev, D. Nicolle, M. Jacobs, V. Quesniaux et al., Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88, Journal of Clinical Investigation, vol.114, issue.12, pp.1790-1799, 2004.
DOI : 10.1172/JCI200421027

URL : https://hal.archives-ouvertes.fr/hal-00094932

C. Fremond, D. Togbe, E. Doz, S. Rose, V. Vasseur et al., IL-1 Receptor-Mediated Signal Is an Essential Component of MyD88-Dependent Innate Response to Mycobacterium tuberculosis Infection, The Journal of Immunology, vol.179, issue.2, pp.1178-89, 2007.
DOI : 10.4049/jimmunol.179.2.1178

URL : https://hal.archives-ouvertes.fr/hal-00318486

H. Elsaidi, D. Barreda, C. Cairo, and T. Lowary, Mycobacterial Phenolic Glycolipids with a Simplified Lipid Aglycone Modulate Cytokine Levels through Toll-Like Receptor 2, ChemBioChem, vol.3, issue.16, pp.2153-2162, 2013.
DOI : 10.1002/cbic.201300505

H. Elsaidi and T. Lowary, Phenolic Glycolipid Analogues, ChemBioChem, vol.3, issue.8, pp.1176-82, 2014.
DOI : 10.1002/cbic.201402001

D. Fallows, B. Peixoto, G. Kaplan, and C. Manca, Mycobacterium leprae alters classical activation of human monocytes in vitro, Journal of Inflammation, vol.18, issue.1, p.8, 2016.
DOI : 10.1186/s12950-016-0117-4