A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero et al., Intrinsically disordered protein, Journal of Molecular Graphics and Modelling, vol.19, issue.1, pp.26-59, 2001.
DOI : 10.1016/S1093-3263(00)00138-8

H. J. Dyson, W. , and P. E. , Intrinsically unstructured proteins and their functions, Nature Reviews Molecular Cell Biology, vol.278, issue.3, pp.197-208, 2005.
DOI : 10.1038/nrm1589

A. L. Fink, Natively unfolded proteins, Current Opinion in Structural Biology, vol.15, issue.1, pp.35-41, 2005.
DOI : 10.1016/j.sbi.2005.01.002

URL : http://dx.doi.org/10.1016/s0006-3495(08)79172-0

V. Receveur-bréchot, J. M. Bourhis, V. N. Uversky, B. Canard, and S. Longhi, Assessing protein disorder and induced folding, Proteins: Structure, Function, and Bioinformatics, vol.415, issue.Pt 12, pp.24-45, 2006.
DOI : 10.1002/prot.20750

D. Eliezer, Biophysical characterization of intrinsically disordered proteins, Current Opinion in Structural Biology, vol.19, issue.1, pp.23-30, 2009.
DOI : 10.1016/j.sbi.2008.12.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728036

U. Midic, C. J. Oldfield, A. K. Dunker, Z. Obradovic, and V. N. Uversky, Unfoldomics of Human Genetic Diseases: Illustrative Examples of Ordered and Intrinsically Disordered Members of the Human Diseasome, Protein & Peptide Letters, vol.16, issue.12, pp.1533-1547, 2009.
DOI : 10.2174/092986609789839377

P. E. Wright, D. , and H. J. , Linking folding and binding, Current Opinion in Structural Biology, vol.19, issue.1, pp.31-38, 2009.
DOI : 10.1016/j.sbi.2008.12.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675572

P. Tompa and D. Kovacs, Intrinsically disordered chaperones in plants and animalsThis paper is one of a selection of papers published in this special issue entitled ???Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting ??? Protein Folding: Principles and Diseases??? and has undergone the Journal's usual peer review process., Biochemistry and Cell Biology, vol.88, issue.2, pp.167-174, 2010.
DOI : 10.1139/O09-163

A. Chenal, J. I. Guijarro, B. Raynal, M. Delepierre, and D. Ladant, RTX Calcium Binding Motifs Are Intrinsically Disordered in the Absence of Calcium: IMPLICATION FOR PROTEIN SECRETION, Journal of Biological Chemistry, vol.284, issue.3, pp.1781-1789, 2009.
DOI : 10.1074/jbc.M807312200

URL : https://hal.archives-ouvertes.fr/pasteur-00364637

S. Pérez, A. C. Karst, J. C. Davi, M. Guijarro, J. I. Ladant et al., Characterization of the Regions Involved in the Calcium-Induced Folding of the Intrinsically Disordered RTX Motifs from the Bordetella pertussis Adenylate Cyclase Toxin, Journal of Molecular Biology, vol.397, issue.2, pp.534-549, 2010.
DOI : 10.1016/j.jmb.2010.01.031

A. Chenal, J. C. Karst, A. C. Peréz, A. K. Wozniak, B. Baron et al., Calcium-Induced Folding and Stabilization of the Intrinsically Disordered RTX Domain of the CyaA Toxin, Biophysical Journal, vol.99, issue.11, pp.3744-3753, 2010.
DOI : 10.1016/j.bpj.2010.10.016

URL : https://hal.archives-ouvertes.fr/pasteur-01509576

I. Linhartova, L. Bumba, J. Masin, M. Basler, R. Osicka et al., RTX proteins: a highly diverse family secreted by a common mechanism, FEMS Microbiology Reviews, vol.34, issue.6, pp.1076-1112, 2010.
DOI : 10.1111/j.1574-6976.2010.00231.x

R. Meier, T. Drepper, V. Svensson, K. E. Jaeger, and U. Baumann, A Calcium-gated Lid and a Large beta-Roll Sandwich Are Revealed by the Crystal Structure of Extracellular Lipase from Serratia marcescens, Journal of Biological Chemistry, vol.282, issue.43, pp.31477-31483, 2007.
DOI : 10.1074/jbc.M704942200

D. Ladant and A. Ullmann, Bordetella pertussis adenylate cyclase: a toxin with multiple talents, Trends in Microbiology, vol.7, issue.4, pp.172-176, 1999.
DOI : 10.1016/S0966-842X(99)01468-7

J. Vojtova, J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense, Current Opinion in Microbiology, vol.9, issue.1, pp.69-75, 2006.
DOI : 10.1016/j.mib.2005.12.011

A. L. Pimenta, K. Racher, L. Jamieson, M. A. Blight, and I. B. Holland, Mutations in HlyD, Part of the Type 1 Translocator for Hemolysin Secretion, Affect the Folding of the Secreted Toxin, Journal of Bacteriology, vol.187, issue.21, pp.7471-7480, 2005.
DOI : 10.1128/JB.187.21.7471-7480.2005

URL : https://hal.archives-ouvertes.fr/hal-00196850

I. B. Holland, L. Schmitt, Y. , and J. , Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review), Molecular Membrane Biology, vol.249, issue.1-2, pp.29-39, 2005.
DOI : 10.1080/09687860500042013

P. Delepelaire, Type I secretion in gram-negative bacteria, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1694, issue.1-3, pp.149-161, 2004.
DOI : 10.1016/j.bbamcr.2004.05.001

URL : https://hal.archives-ouvertes.fr/hal-00020359

M. Bejerano, I. Nisan, A. Ludwig, W. Goebel, and E. Hanski, Characterization of the C-terminal domain essential for toxic activity of adenylate cyclase toxin, Molecular Microbiology, vol.77, issue.1, pp.381-392, 1999.
DOI : 10.1074/jbc.270.44.26370

M. Iwaki, A. Ullmann, and P. Sebo, Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin, Molecular Microbiology, vol.17, issue.6, pp.1015-1024, 1995.
DOI : 10.1111/j.1365-2958.1995.mmi_17061015.x

C. Bauche, A. Chenal, O. Knapp, C. Bodenreider, R. Benz et al., Structural and Functional Characterization of an Essential RTX Subdomain of Bordetella pertussis Adenylate Cyclase Toxin, Journal of Biological Chemistry, vol.281, issue.25, pp.16914-16926, 2006.
DOI : 10.1074/jbc.M601594200

R. W. Bourdeau, E. Malito, A. Chenal, B. L. Bishop, M. W. Musch et al., Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis, Journal of Biological Chemistry, vol.284, issue.21, pp.14645-14656, 2009.
DOI : 10.1074/jbc.M807631200

J. C. Karst, A. C. Sotomayor-pérez, J. I. Guijarro, B. Raynal, A. Chenal et al., Adenylate Cyclase Toxin, Biochemistry, vol.49, issue.2, pp.318-328, 2010.
DOI : 10.1021/bi9016389

URL : https://hal.archives-ouvertes.fr/hal-00512114

S. E. Harding, C. , and H. , Inversion Formulas for Ellipsoid of Revolution Macromolecular Shape Functions, Analytical Biochemistry, vol.228, issue.1, pp.131-142, 1995.
DOI : 10.1006/abio.1995.1324

S. K. Basak and M. R. Ladisch, Correlation of Electrophoretic Mobilities of Proteins and Peptides with Their Physicochemical Properties, Analytical Biochemistry, vol.226, issue.1, pp.51-58, 1995.
DOI : 10.1006/abio.1995.1190

H. Lilie, W. Haehnel, R. Rudolph, and U. Baumann, Folding of a synthetic parallel ??-roll protein, FEBS Letters, vol.362, issue.2, pp.173-177, 2000.
DOI : 10.1016/S0014-5793(00)01308-9

G. R. Szilvay, M. A. Blenner, O. Shur, D. M. Cropek, and S. Banta, Adenylate Cyclase, Biochemistry, vol.48, issue.47, pp.11273-11282, 2009.
DOI : 10.1021/bi901447j

M. A. Blenner, O. Shur, G. R. Szilvay, D. M. Cropek, and S. Banta, Calcium-Induced Folding of a Beta Roll Motif Requires C-Terminal Entropic Stabilization, Journal of Molecular Biology, vol.400, issue.2, pp.244-256, 2010.
DOI : 10.1016/j.jmb.2010.04.056

S. Steinbacher, R. Seckler, S. Miller, B. Steipe, R. Huber et al., Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer, Science, vol.265, issue.5170, pp.383-386, 1994.
DOI : 10.1126/science.8023158

C. R. Raetz, R. , and S. L. , A Left-Handed Parallel beta Helix in the Structure of UDP-N-Acetylglucosamine Acyltransferase, Science, vol.270, issue.5238, pp.997-1000, 1995.
DOI : 10.1126/science.270.5238.997

C. Govaerts, H. Wille, S. B. Prusiner, and F. E. Cohen, Evidence for assembly of prions with left-handed ??-helices into trimers, Proceedings of the National Academy of Sciences, vol.9, issue.5, pp.8342-8347, 2004.
DOI : 10.1038/nsb792

V. N. Uversky, What does it mean to be natively unfolded?, European Journal of Biochemistry, vol.39, issue.1, pp.2-12, 2002.
DOI : 10.1046/j.0014-2956.2001.02649.x

V. N. Uversky, J. R. Gillespie, and A. L. Fink, Dependence of the mean net charge and the mean hydrophobicity of the block V polypeptides This plot presents the charge hydrophobicity phase space for both the apo-state (circles) and the holo-state (squares) of RD (black) (orange) polypeptides. The filled symbols correspond to the mean net charge values of RC S and RC L that were experimentally determined herein. The open symbols correspond to the mean net charge values of the RTX polypeptides that were theoretically computed from the amino acid sequence and considering that block V polypeptides and the full RD protein should bind 7 and 35 calcium ions, respectively (24) The theoretically computed charge value of holo-RC L (open red square) is hidden by the experimental measurement of the protein charge, The oblique line represents the boundary between intrinsically disordered and folded proteins according to Uversky et, pp.415-427, 2000.