D. Ladant and A. Ullmann, Bordetella pertussis adenylate cyclase: a toxin with multiple talents, Trends in Microbiology, vol.7, issue.4, pp.172-176, 1999.
DOI : 10.1016/S0966-842X(99)01468-7

J. Vojtova, J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense, Current Opinion in Microbiology, vol.9, issue.1, pp.69-75, 2006.
DOI : 10.1016/j.mib.2005.12.011

R. Shrivastava and J. Miller, Virulence factor secretion and translocation by Bordetella species, Current Opinion in Microbiology, vol.12, issue.1, pp.88-93, 2009.
DOI : 10.1016/j.mib.2009.01.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703423

N. H. Carbonetti, and cell biology tools, Future Microbiology, vol.5, issue.3, pp.455-469133, 2010.
DOI : 10.2217/fmb.09.133

P. Glaser, The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia col, Molecular Microbiology, vol.77, issue.1, pp.19-30, 1988.
DOI : 10.1016/0003-9861(82)90111-4

J. C. Karst, Adenylate Cyclase Toxin, Biochemistry, vol.49, issue.2, pp.318-328, 2010.
DOI : 10.1021/bi9016389

URL : https://hal.archives-ouvertes.fr/hal-00512114

E. Selwa, Adenylyl Cyclase by Calmodulin, Journal of Biological Chemistry, vol.289, issue.30, pp.21131-21141, 2014.
DOI : 10.1074/jbc.M113.530410

URL : https://hal.archives-ouvertes.fr/pasteur-01107494

P. Glaser, H. Sakamoto, J. Bellalou, A. Ullmann, and A. Danchin, Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclasehaemolysin bifunctional protein of Bordetella pertussis, Embo J, vol.7, pp.3997-4004, 1988.

J. Bellalou, H. Sakamoto, D. Ladant, C. Geoffroy, and A. Ullmann, Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase, Infection and immunity, vol.58, pp.3242-3247, 1990.

H. Sakamoto, J. Bellalou, P. Sebo, and D. Ladant, Bordetella pertussis adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities, J Biol Chem, vol.267, pp.13598-13602, 1992.

R. Veneziano, Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer, Proceedings of the National Academy of Sciences, vol.28, issue.33, pp.20473-204781312975110, 2013.
DOI : 10.1021/la3020223

URL : https://hal.archives-ouvertes.fr/hal-01093165

J. C. Karst, Identification of a Region That Assists Membrane Insertion and Translocation of the Catalytic Domain of Bordetella pertussis CyaA Toxin, Journal of Biological Chemistry, vol.287, issue.12, pp.9200-9212, 2012.
DOI : 10.1074/jbc.M111.316166

URL : https://hal.archives-ouvertes.fr/pasteur-01423063

J. Masin, Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membranepermeabilizing capacity of adenylate cyclase toxin, Sci Rep, vol.6, pp.10-1038, 2016.

O. Subrini, Characterization of a Membrane-active Peptide from the Bordetella pertussis CyaA Toxin, Journal of Biological Chemistry, vol.288, issue.45, pp.32585-32598, 2013.
DOI : 10.1074/jbc.M113.508838

URL : https://hal.archives-ouvertes.fr/hal-00937043

E. M. Barry, Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation., Journal of Bacteriology, vol.173, issue.2, pp.720-726, 1991.
DOI : 10.1128/jb.173.2.720-726.1991

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC207064

P. Sebo, P. Glaser, H. Sakamoto, and A. Ullmann, High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system, Gene, vol.104, issue.1, pp.19-24, 1991.
DOI : 10.1016/0378-1119(91)90459-O

M. Hackett, L. Guo, J. Shabanowitz, D. F. Hunt, and E. L. Hewlett, Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis, Science, vol.266, issue.5184, pp.433-435, 1994.
DOI : 10.1126/science.7939682

G. D. Westrop, E. K. Hormozi, N. A. Da-costa, R. Parton, and J. G. Coote, Bordetella pertussis adenylate cyclase toxin: proCyaA and CyaC proteins synthesised separately in Escherichia coli produce active toxin in vitro, Gene, vol.180, issue.1-2, pp.91-99, 1996.
DOI : 10.1016/S0378-1119(96)00412-X

J. C. Karst, Adenylate Cyclase CyaA Toxin into a Monomeric and Cytotoxic Form, Journal of Biological Chemistry, vol.289, issue.44, pp.30702-30716, 2014.
DOI : 10.1074/jbc.M114.580852

URL : https://hal.archives-ouvertes.fr/pasteur-01408931

M. El-azami-el-idrissi, Adenylate Cyclase with CD11b/CD18, Journal of Biological Chemistry, vol.278, issue.40, pp.38514-38521, 2003.
DOI : 10.1074/jbc.M304387200

R. A. Welch, RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Current topics in microbiology and immunology 257, pp.85-111, 2001.

I. Linhartova, RTX proteins: a highly diverse family secreted by a common mechanism, FEMS Microbiology Reviews, vol.34, issue.6, pp.1076-1112, 2010.
DOI : 10.1111/j.1574-6976.2010.00231.x

F. Gentile, L. G. Knipling, D. L. Sackett, and J. Wolff, Invasive adenylyl cyclase of Bordetella pertussis. Physical, catalytic, and toxic properties, J Biol Chem, vol.265, pp.10686-10692, 1990.

E. L. Hewlett, Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity, J Biol Chem, vol.266, pp.17503-17508, 1991.

T. Rose, P. Sebo, J. Bellalou, and D. Ladant, Interaction of Calcium with Bordetella pertussis Adenylate Cyclase Toxin: CHARACTERIZATION OF MULTIPLE CALCIUM-BINDING SITES AND CALCIUM-INDUCED CONFORMATIONAL CHANGES, Journal of Biological Chemistry, vol.270, issue.44, pp.26370-26376, 1995.
DOI : 10.1074/jbc.270.44.26370

A. Chenal, J. I. Guijarro, B. Raynal, M. Delepierre, and D. Ladant, RTX Calcium Binding Motifs Are Intrinsically Disordered in the Absence of Calcium: IMPLICATION FOR PROTEIN SECRETION, Journal of Biological Chemistry, vol.284, issue.3, pp.1781-1789, 2009.
DOI : 10.1074/jbc.M807312200

URL : https://hal.archives-ouvertes.fr/pasteur-00364637

G. R. Szilvay, M. A. Blenner, O. Shur, D. M. Cropek, and S. Banta, Adenylate Cyclase, Biochemistry, vol.48, issue.47, pp.11273-11282, 2009.
DOI : 10.1021/bi901447j

S. Perez and A. C. , Characterization of the Regions Involved in the Calcium-Induced Folding of the Intrinsically Disordered RTX Motifs from the Bordetella pertussis Adenylate Cyclase Toxin, Journal of Molecular Biology, vol.397, issue.2, pp.534-549, 2010.
DOI : 10.1016/j.jmb.2010.01.031

URL : https://hal.archives-ouvertes.fr/hal-00512116

A. Chenal, Calcium-Induced Folding and Stabilization of the Intrinsically Disordered RTX Domain of the CyaA Toxin, Biophysical Journal, vol.99, issue.11, pp.3744-3753016, 2010.
DOI : 10.1016/j.bpj.2010.10.016

URL : https://hal.archives-ouvertes.fr/pasteur-01509576

A. C. Sotomayor-perez, O. Subrini, A. Hessel, D. Ladant, and A. Chenal, Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of a Repeat in Toxin (RTX) Protein, Journal of the American Chemical Society, vol.135, issue.32, pp.11929-11934, 2013.
DOI : 10.1021/ja404790f

URL : https://hal.archives-ouvertes.fr/pasteur-01423043

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Calcium-induced Folding of Intrinsically Disordered Repeat-in-Toxin (RTX) Motifs via Changes of Protein Charges and Oligomerization States, Journal of Biological Chemistry, vol.286, issue.19, pp.16997-17004, 2011.
DOI : 10.1074/jbc.M110.210393

URL : https://hal.archives-ouvertes.fr/pasteur-01508724

O. 'brien and D. P. , Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion, Sci Rep, vol.5, pp.10-1038, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01406897

I. B. Holland, L. Schmitt, and J. Young, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review), Molecular Membrane Biology, vol.249, issue.1-2, pp.29-39, 2005.
DOI : 10.1080/09687860500042013

H. R. Masure, D. C. Au, M. K. Gross, M. G. Donovan, and D. R. Storm, Secretion of the Bordetella pertussis adenylate cyclase from Escherichia coli containing the hemolysin operon, Biochemistry, vol.29, issue.1, pp.140-145, 1990.
DOI : 10.1021/bi00453a017

L. Bumba, Calcium-Driven Folding of RTX Domain ??-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts, Molecular Cell, vol.62, issue.1, pp.47-62018, 2016.
DOI : 10.1016/j.molcel.2016.03.018

P. Guermonprez, Integrin (Cd11b/Cd18), The Journal of Experimental Medicine, vol.162, issue.9, pp.1035-1044, 2001.
DOI : 10.1073/pnas.94.7.3314

I. E. Ehrmann, M. C. Gray, V. M. Gordon, L. S. Gray, and E. L. Hewlett, Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis, FEBS letters, vol.278, issue.91, pp.79-83, 1991.

A. Rogel and E. Hanski, Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane, J Biol Chem, vol.267, pp.22599-22605, 1992.

M. Basler, Segments Crucial for Membrane Translocation and Pore-forming Activity of Bordetella Adenylate Cyclase Toxin, Journal of Biological Chemistry, vol.282, issue.17, pp.12419-12429, 2007.
DOI : 10.1074/jbc.M611226200

J. C. Eby, Selective Translocation of the Bordetella pertussis Adenylate Cyclase Toxin across the Basolateral Membranes of Polarized Epithelial Cells, Journal of Biological Chemistry, vol.285, issue.14, pp.10662-10670, 2010.
DOI : 10.1074/jbc.M109.089219

S. R. Paccani, adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse, The Journal of Experimental Medicine, vol.158, issue.6, pp.1317-1330, 2011.
DOI : 10.1101/cshperspect.a002279

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173238

J. S. Dolores, S. Agarwal, M. Egerer, and K. J. Satchell, ???MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics, Molecular Microbiology, vol.12, issue.4, pp.590-604, 2015.
DOI : 10.1111/mmi.12879

V. M. Gordon, Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells, J Biol Chem, vol.264, pp.14792-14796, 1989.

A. Rogel, Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme, Embo J, vol.8, pp.2755-2760, 1989.

P. Guermonprez, D. Ladant, G. Karimova, A. Ullmann, and C. Leclerc, Direct delivery of the Bordetella pertussis adenylate cyclase toxin to the MHC class I antigen presentation pathway, J Immunol, vol.162, pp.1910-1916, 1999.

J. Vojtova-vodolanova, Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin, The FASEB Journal, vol.23, issue.9, pp.2831-2843, 2009.
DOI : 10.1096/fj.09-131250

L. Bumba, J. Masin, R. Fiser, and P. Sebo, Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps, PLoS Pathog, vol.6, 2010.

K. B. Uribe, A. Etxebarria, C. Martin, and H. Ostolaza, Calpain-Mediated Processing of Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal Domain, PLoS ONE, vol.284, issue.5, 2013.
DOI : 10.1371/journal.pone.0067648.g009

K. B. Uribe, Ca2+ Influx and Tyrosine Kinases Trigger Bordetella Adenylate Cyclase Toxin (ACT) Endocytosis. Cell Physiology and Expression of the CD11b/CD18 Integrin Major Determinants of the Entry Route, PLoS ONE, vol.115, issue.9, 2013.
DOI : 10.1371/journal.pone.0074248.s006

URL : http://doi.org/10.1371/journal.pone.0074248

C. Martin, Membrane Restructuring by Bordetella pertussis Adenylate Cyclase Toxin, a Member of the RTX Toxin Family, Journal of Bacteriology, vol.186, issue.12, pp.3760-3765, 2004.
DOI : 10.1128/JB.186.12.3760-3765.2004

G. Y. Cheung, Functional and structural studies on different forms of the adenylate cyclase toxin of Bordetella pertussis, Microbial Pathogenesis, vol.46, issue.1, pp.36-42, 2009.
DOI : 10.1016/j.micpath.2008.10.005

E. L. Hewlett, M. A. Urban, C. R. Manclark, and J. Wolff, Extracytoplasmic adenylate cyclase of Bordetella pertussis., Proceedings of the National Academy of Sciences, vol.73, issue.6, pp.1926-1930, 1976.
DOI : 10.1073/pnas.73.6.1926

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC430420

E. L. Hewlett, V. M. Gordon, J. D. Mccaffery, W. M. Sutherland, and M. C. Gray, Adenylate cyclase toxin from Bordetella pertussis. Identification and purification of the holotoxin molecule, J Biol Chem, vol.264, pp.19379-19384, 1989.

G. Karimova, Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: Implication for the in vivo delivery of CD8+ T cell epitopes into antigen-presenting cells, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.12532-12537, 1998.
DOI : 10.1073/pnas.94.22.12059

J. C. Karst, A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Estimation of Intrinsically Disordered Protein Shape and Time-Averaged Apparent Hydration in Native Conditions by a Combination of Hydrodynamic Methods, Methods in molecular biology, vol.896, pp.163-177, 2012.
DOI : 10.1007/978-1-4614-3704-8_10

URL : https://hal.archives-ouvertes.fr/pasteur-01423306

H. Fischer, M. De-oliveira-neto, H. B. Napolitano, I. Polikarpov, and A. F. Craievich, Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale, Journal of Applied Crystallography, vol.313, issue.1, pp.101-109, 2010.
DOI : 10.1107/S0021889809043076/ce5058sup1.pdf

R. P. Rambo and J. A. Tainer, Accurate assessment of mass, models and resolution by small-angle scattering, Nature, vol.94, issue.7446, pp.477-487, 2013.
DOI : 10.1038/nature12070

D. I. Svergun, Restoring Low Resolution Structure of Biological Macromolecules from Solution Scattering Using Simulated Annealing, Biophysical Journal, vol.76, issue.6, pp.2879-2886, 1999.
DOI : 10.1016/S0006-3495(99)77443-6

V. V. Volkov and D. I. Svergun, shape determination in small-angle scattering, Journal of Applied Crystallography, vol.36, issue.3, pp.860-864, 2003.
DOI : 10.1107/S0021889803000268

R. A. Welch, Pore-forming cytolysins of Gram-negative bacteria, Molecular Microbiology, vol.42, issue.3, pp.521-528, 1991.
DOI : 10.1007/BF01869107

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Disorder-to-Order Transition in the CyaA Toxin RTX Domain: Implications for Toxin Secretion, Scientific RepoRts | 7:42065 | DOI: 10.1038, pp.1-20, 2015.
DOI : 10.1111/mmi.12615

C. Schindel, hemolysin with biological membranes, European Journal of Biochemistry, vol.12, issue.3, pp.800-808, 2001.
DOI : 10.1046/j.1432-1327.2001.01937.x

L. Sanchez-magraner, Interdomain Ca2+ effects in Escherichia coli ??-haemolysin: Ca2+ binding to the C-terminal domain stabilizes both C- and N-terminal domains, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.6, pp.1225-1233, 2010.
DOI : 10.1016/j.bbamem.2010.03.007

J. Masin, R. Osicka, L. Bumba, and P. Sebo, Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme, Pathog Dis, vol.73, issue.075, pp.10-1093, 2015.

A. S. Otero, X. B. Yi, M. C. Gray, G. Szabo, and E. L. Hewlett, Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin, J Biol Chem, vol.270, pp.9695-9697, 1995.

R. Fiser, Third Activity of Bordetella Adenylate Cyclase (AC) Toxin-Hemolysin: MEMBRANE TRANSLOCATION OF AC DOMAIN POLYPEPTIDE PROMOTES CALCIUM INFLUX INTO CD11b+ MONOCYTES INDEPENDENTLY OF THE CATALYTIC AND HEMOLYTIC ACTIVITIES, Journal of Biological Chemistry, vol.282, issue.5, pp.2808-2820, 2007.
DOI : 10.1074/jbc.M609979200

R. Fiser, Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores, PLoS Pathogens, vol.223, issue.Pt 9, 2012.
DOI : 10.1371/journal.ppat.1002580.s010

URL : http://doi.org/10.1371/journal.ppat.1002580

A. Rogel, R. Meller, and E. Hanski, Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis, J Biol Chem, vol.266, pp.3154-3161, 1991.

D. F. Boehm, R. A. Welch, and I. S. Snyder, Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes, Infection and immunity, vol.58, pp.1959-1964, 1990.

A. Dobereiner, A. Schmid, A. Ludwig, W. Goebel, and R. Benz, The Effects of Calcium and Other Polyvalent Cations on Channel Formation by Escherichia colialpha-Hemolysin in Red Blood Cells and Lipid Bilayer Membranes, European Journal of Biochemistry, vol.220, issue.2, pp.454-460, 1996.
DOI : 10.1085/jgp.77.4.445

T. J. Schoenmakers, G. J. Visser, G. Flik, and A. P. Theuvenet, CHELATOR: an improved method for computing metal ion concentrations in physiological solutions, Biotechniques, vol.12, pp.870-874, 1992.

A. C. Sotomayor-perez, J. C. Karst, D. Ladant, and A. Chenal, Mean Net Charge of Intrinsically Disordered Proteins: Experimental Determination of Protein Valence by Electrophoretic Mobility Measurements, Methods in molecular biology, vol.896, pp.331-349, 2012.
DOI : 10.1007/978-1-4614-3704-8_22

A. Perier, Concerted Protonation of Key Histidines Triggers Membrane Interaction of the Diphtheria Toxin T Domain, Journal of Biological Chemistry, vol.282, issue.33, pp.24239-24245, 2007.
DOI : 10.1074/jbc.M703392200

URL : https://hal.archives-ouvertes.fr/hal-01186603

A. Chenal, Conformational States and Thermodynamics of ??-Lactalbumin Bound to Membranes: A Case Study of the Effects of pH, Calcium, Lipid Membrane Curvature and Charge, Journal of Molecular Biology, vol.349, issue.4, pp.890-905, 2005.
DOI : 10.1016/j.jmb.2005.04.036

URL : https://hal.archives-ouvertes.fr/hal-00384704

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.
DOI : 10.1107/S0021889803012779

M. B. Kozin and D. I. Svergun, Automated matching of high- and low-resolution structural models, Journal of Applied Crystallography, vol.34, issue.1, pp.33-41, 2001.
DOI : 10.1107/S0021889800014126

N. Leulliot, The Family X DNA Polymerase from Deinococcus radiodurans Adopts a Non-standard Extended Conformation, Journal of Biological Chemistry, vol.284, issue.18, pp.11992-11999, 2009.
DOI : 10.1074/jbc.M809342200

S. E. Acknowledgements, was supported by a stipend from the Pasteur -Paris University (PPU) International PhD Program; A.C.S.P. was supported by a PTR grant (PTR374) Running costs were supported by Institut Pasteur, PasteurInnov (PIV15-197), PTR grant (PTR451), CNRS, Fondation Recherche Médicale (FRM DBS20140930771) Funding for the LTQ-Orbitrap Velos acquisition was secured through a DIM Malinf grant from the region Ile