I. Romero-brey, Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication, PLoS Pathogens, vol.116, issue.12, p.1003056, 2012.
DOI : 10.1371/journal.ppat.1003056.s008

S. Reiss, Recruitment and Activation of a Lipid Kinase by Hepatitis C Virus NS5A Is Essential for Integrity of the Membranous Replication Compartment, Cell Host & Microbe, vol.9, issue.1, pp.32-45, 2011.
DOI : 10.1016/j.chom.2010.12.002

P. Nagy and J. Pogany, The dependence of viral RNA replication on co-opted host factors, Nature Reviews Microbiology, vol.81, pp.137-149, 2011.
DOI : 10.1038/nrmicro2692

P. Ferraris, E. Blanchard, and P. Roingeard, Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes, Journal of General Virology, vol.91, issue.9, pp.2230-2237, 2010.
DOI : 10.1099/vir.0.022186-0

URL : https://hal.archives-ouvertes.fr/hal-00510829

P. Ke and S. Chen, Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro, Journal of Clinical Investigation, vol.121, issue.1, pp.37-56, 2011.
DOI : 10.1172/JCI41474DS1

A. Chiramel, N. Brady, and R. Bartenschlager, Divergent Roles of Autophagy in Virus Infection, Cells, vol.141, issue.1, pp.83-104, 2013.
DOI : 10.1016/j.biocel.2012.05.018

C. Lamb, T. Yoshimori, and S. Tooze, The autophagosome: origins unknown, biogenesis complex, Nature Reviews Molecular Cell Biology, vol.20, issue.12, pp.759-774, 2013.
DOI : 10.1038/nrm3696

P. Ke and S. Chen, Autophagy in hepatitis C virus-host interactions: Potential roles and therapeutic targets for liver-associated diseases, World Journal of Gastroenterology, vol.20, issue.19, pp.5773-5793, 2014.
DOI : 10.3748/wjg.v20.i19.5773

S. Henry, Impaired Macrophage Function Underscores Susceptibility to Salmonella in Mice Lacking Irgm1 (LRG-47), The Journal of Immunology, vol.179, issue.10, pp.6963-6972, 2007.
DOI : 10.4049/jimmunol.179.10.6963

J. Macmicking, G. Taylor, and J. Mckinney, Immune Control of Tuberculosis by IFN-??-Inducible LRG-47, Science, vol.302, issue.5645, pp.654-659, 2003.
DOI : 10.1126/science.1088063

S. Martens, Mechanisms Regulating the Positioning of Mouse p47 Resistance GTPases LRG-47 and IIGP1 on Cellular Membranes: Retargeting to Plasma Membrane Induced by Phagocytosis, The Journal of Immunology, vol.173, issue.4, pp.2594-2606, 2004.
DOI : 10.4049/jimmunol.173.4.2594

S. Tiwari, H. Choi, T. Matsuzawa, M. Pypaert, and J. Macmicking, Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria, Nature Immunology, vol.507, issue.8, pp.907-917, 2009.
DOI : 10.1038/ni.1759

S. Singh, A. Davis, G. Taylor, and V. Deretic, Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria, Science, vol.119, issue.2, pp.1438-1441, 2006.
DOI : 10.1242/jcs.02735

S. Singh, Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria, Nature Cell Biology, vol.452, issue.12, pp.1154-1165, 2010.
DOI : 10.1038/ncb1730

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996476

I. Grégoire, IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network, PLoS Pathogens, vol.1, issue.12, p.1002422, 2011.
DOI : 10.1371/journal.ppat.1002422.s015

S. Chauhan, M. Mandell, and V. Deretic, IRGM Governs the Core Autophagy Machinery to Conduct Antimicrobial Defense, Molecular Cell, vol.58, issue.3, pp.507-521, 2015.
DOI : 10.1016/j.molcel.2015.03.020

N. Hsu, Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication, Cell, vol.141, issue.5, pp.799-811, 2010.
DOI : 10.1016/j.cell.2010.03.050

L. Zhang, ARF1 and GBF1 Generate a PI4P-Enriched Environment Supportive of Hepatitis C Virus Replication, PLoS ONE, vol.278, issue.2, p.32135, 2012.
DOI : 10.1371/journal.pone.0032135.t001

L. Goueslain, Identification of GBF1 as a Cellular Factor Required for Hepatitis C Virus RNA Replication, Journal of Virology, vol.84, issue.2, pp.773-787, 2010.
DOI : 10.1128/JVI.01190-09

M. Matto, Role for ADP Ribosylation Factor 1 in the Regulation of Hepatitis C Virus Replication, Journal of Virology, vol.85, issue.2, pp.946-956, 2011.
DOI : 10.1128/JVI.00753-10

R. Farhat, Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication, Cellular Microbiology, vol.7, issue.8, pp.1121-1133, 2016.
DOI : 10.1111/cmi.12572

URL : https://hal.archives-ouvertes.fr/hal-01305641

M. Hillaire, E. Décembre, and M. Dreux, Autophagy: A Home Remodeler for Hepatitis C Virus, Autophagy, Infection, and the Immune Response, vol.43, issue.Suppl. 1, 2014.
DOI : 10.1002/9781118677551.ch7

M. Dreux, P. Gastaminza, S. Wieland, and F. Chisari, The autophagy machinery is required to initiate hepatitis C virus replication, Proceedings of the National Academy of Sciences, vol.102, issue.26, pp.14046-14051, 2009.
DOI : 10.1073/pnas.0503596102

P. Wong, C. Puente, I. Ganley, and X. Jiang, The ULK1 complex, Autophagy, vol.26, issue.2, pp.124-137, 2013.
DOI : 10.1111/j.1349-7006.2011.01964.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552878

R. Russell, H. Yuan, and K. Guan, Autophagy regulation by nutrient signaling, Cell Research, vol.447, issue.1, pp.42-57, 2014.
DOI : 10.1038/cdd.2009.34

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879708

H. Konno, K. Konno, and G. Barber, Cyclic Dinucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling, Cell, vol.155, issue.3, pp.688-698, 2013.
DOI : 10.1016/j.cell.2013.09.049

N. Mizushima, T. Yoshimori, and Y. Ohsumi, The Role of Atg Proteins in Autophagosome Formation, Annual Review of Cell and Developmental Biology, vol.27, issue.1, pp.107-132, 2011.
DOI : 10.1146/annurev-cellbio-092910-154005

M. Ait-goughoulte, Hepatitis C Virus Genotype 1a Growth and Induction of Autophagy, Journal of Virology, vol.82, issue.5, pp.2241-2249, 2008.
DOI : 10.1128/JVI.02093-07

D. Sir, Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response, Hepatology, vol.10, issue.4, pp.1054-1061, 2008.
DOI : 10.1002/hep.22464

G. Allavena, Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation, Autophagy, vol.516, issue.11, pp.2085-2097, 2016.
DOI : 10.4161/auto.7.1.13893

Y. Zhao, S. Konen-waisman, G. Taylor, S. Martens, and J. Howard, Localisation and Mislocalisation of the Interferon-Inducible Immunity-Related GTPase, Irgm1 (LRG-47) in Mouse Cells, PLoS ONE, vol.5, issue.1, p.8648, 2010.
DOI : 10.1371/journal.pone.0008648.s003

H. Springer, M. Schramm, G. Taylor, and J. Howard, Irgm1 (LRG-47), a Regulator of Cell-Autonomous Immunity, Does Not Localize to Mycobacterial or Listerial Phagosomes in IFN-??-Induced Mouse Cells, The Journal of Immunology, vol.191, issue.4, pp.1765-1774, 2013.
DOI : 10.4049/jimmunol.1300641

N. Fujita, Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin, The Journal of Cell Biology, vol.203, issue.1, pp.115-128, 2013.
DOI : 10.4049/jimmunol.0900441

B. Bishé, G. Syed, S. Field, and A. Siddiqui, Role of Phosphatidylinositol 4-Phosphate (PI4P) and Its Binding Protein GOLPH3 in Hepatitis C Virus Secretion, Journal of Biological Chemistry, vol.287, issue.33, pp.27637-27647, 2012.
DOI : 10.1074/jbc.M112.346569

G. Belov, Complex Dynamic Development of Poliovirus Membranous Replication Complexes, Journal of Virology, vol.86, issue.1, pp.302-312, 2012.
DOI : 10.1128/JVI.05937-11

A. Ward, The Golgi associated ERI3 is a Flavivirus host factor, Scientific Reports, vol.67, issue.1, p.34379, 2016.
DOI : 10.1016/j.ymeth.2013.08.015

F. Manolea, C. A. Chun, J. Rosas, J. Melançon, and P. , Distinct Functions for Arf Guanine Nucleotide Exchange Factors at the Golgi Complex: GBF1 and BIGs Are Required for Assembly and Maintenance of the Golgi Stack and trans-Golgi Network, Respectively, Molecular Biology of the Cell, vol.19, issue.2, pp.523-535, 2008.
DOI : 10.1091/mbc.E07-04-0394

X. Zhao, T. Lasell, and P. Melançon, Localization of Large ADP-Ribosylation Factor-Guanine Nucleotide Exchange Factors to Different Golgi Compartments: Evidence for Distinct Functions in Protein Traffic, Molecular Biology of the Cell, vol.13, issue.1, pp.119-133, 2002.
DOI : 10.1091/mbc.01-08-0420

K. Kawamoto, GBF1, a Guanine Nucleotide Exchange Factor for ADP-Ribosylation Factors, is Localized to the cis-Golgi and Involved in Membrane Association of the COPI Coat, Traffic, vol.81, issue.7, pp.483-495, 2002.
DOI : 10.1074/jbc.273.38.24693

L. Mao, AMPK phosphorylates GBF1 for mitotic Golgi disassembly, Journal of Cell Science, vol.126, issue.6, pp.1498-1505, 2013.
DOI : 10.1242/jcs.121954

Y. Morohashi, Z. Balklava, M. Ball, H. Hughes, and M. Lowe, Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis, Biochemical Journal, vol.6, issue.3, pp.401-412, 2010.
DOI : 10.1073/pnas.0507066103

URL : https://hal.archives-ouvertes.fr/hal-00479280

T. Miyamoto, AMP-activated Protein Kinase Phosphorylates Golgi-specific Brefeldin A Resistance Factor 1 at Thr1337 to Induce Disassembly of Golgi Apparatus, Journal of Biological Chemistry, vol.283, issue.7, pp.4430-4438, 2008.
DOI : 10.1074/jbc.M708296200

J. Donaldson, A. Honda, and R. Weigert, Multiple activities for Arf1 at the Golgi complex, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1744, issue.3, pp.364-373, 2005.
DOI : 10.1016/j.bbamcr.2005.03.001

D. Souza-schorey, C. Chavrier, and P. , ARF proteins: roles in membrane traffic and beyond, Nature Reviews Molecular Cell Biology, vol.16, issue.5, pp.347-358, 2006.
DOI : 10.1038/nrm1910

Y. Xiang, J. Seemann, B. Bisel, S. Punthambaker, and Y. Wang, Active ADP-ribosylation Factor-1 (ARF1) Is Required for Mitotic Golgi Fragmentation, Journal of Biological Chemistry, vol.282, issue.30, pp.21829-21837, 2007.
DOI : 10.1074/jbc.M611716200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278854

J. Geng and D. Klionsky, The Golgi as a potential membrane source for autophagy, Autophagy, vol.6, issue.7, pp.950-951, 2010.
DOI : 10.4161/auto.6.7.13009

J. Mackenzie, M. Jones, and E. Westaway, Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells, J Virol, vol.73, pp.9555-9567, 1999.

E. Westaway, J. Mackenzie, M. Kenney, M. Jones, and A. Khromykh, Ultrastructure of Kunjin virus-infected cells: Colocalization of NS1 and NS3 with doublestranded RNA, and of NS2B with NS3, in virus-induced membrane structures, J Virol, vol.71, pp.6650-6661, 1997.

Z. Zhou, M. Mogensen, P. Powell, S. Curry, and T. Wileman, Foot-and-Mouth Disease Virus 3C Protease Induces Fragmentation of the Golgi Compartment and Blocks Intra-Golgi Transport, Journal of Virology, vol.87, issue.21, pp.11721-11729, 2013.
DOI : 10.1128/JVI.01355-13

A. Mousnier, Human Rhinovirus 16 Causes Golgi Apparatus Fragmentation without Blocking Protein Secretion, Journal of Virology, vol.88, issue.20, pp.11671-11685, 2014.
DOI : 10.1128/JVI.01170-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178721

G. Belov, Hijacking Components of the Cellular Secretory Pathway for Replication of Poliovirus RNA, Journal of Virology, vol.81, issue.2, pp.558-567, 2007.
DOI : 10.1128/JVI.01820-06

J. Moss and M. Vaughan, Structure and Function of ARF Proteins: Activators of Cholera Toxin and Critical Components of Intracellular Vesicular Transport Processes, Journal of Biological Chemistry, vol.270, issue.21, pp.12327-12330, 1995.
DOI : 10.1074/jbc.270.21.12327

G. Belov and E. Sztul, Rewiring of Cellular Membrane Homeostasis by Picornaviruses, Journal of Virology, vol.88, issue.17, pp.9478-9489, 2014.
DOI : 10.1128/JVI.00922-14

B. Kim, A. Shenoy, P. Kumar, C. Bradfield, and J. Macmicking, IFN-Inducible GTPases in Host Cell Defense, Cell Host & Microbe, vol.12, issue.4, pp.432-444, 2012.
DOI : 10.1016/j.chom.2012.09.007

URL : http://doi.org/10.1016/j.chom.2012.09.007

A. Godi, ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex, Nat Cell Biol, vol.1, pp.280-287, 1999.

K. Berger, S. Kelly, T. Jordan, M. Tartell, and G. Randall, Hepatitis C Virus Stimulates the Phosphatidylinositol 4-Kinase III Alpha-Dependent Phosphatidylinositol 4-Phosphate Production That Is Essential for Its Replication, Journal of Virology, vol.85, issue.17, pp.8870-8883, 2011.
DOI : 10.1128/JVI.00059-11

Y. Lim and S. Hwang, Hepatitis C Virus NS5A Protein Interacts with Phosphatidylinositol 4-Kinase Type III?? and Regulates Viral Propagation, Journal of Biological Chemistry, vol.286, issue.13, pp.11290-11298, 2011.
DOI : 10.1074/jbc.M110.194472

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064185

J. Borawski, Class III Phosphatidylinositol 4-Kinase Alpha and Beta Are Novel Host Factor Regulators of Hepatitis C Virus Replication, Journal of Virology, vol.83, issue.19, pp.10058-10074, 2009.
DOI : 10.1128/JVI.02418-08

D. Heuer, Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction, Nature, vol.5, issue.7230, pp.731-735, 2009.
DOI : 10.1038/nature07578

P. Roulin, Rhinovirus Uses a Phosphatidylinositol 4-Phosphate/Cholesterol Counter-Current for the Formation of Replication Compartments at the ER-Golgi Interface, Cell Host & Microbe, vol.16, issue.5, pp.677-690, 2014.
DOI : 10.1016/j.chom.2014.10.003

J. Romano, S. Sonda, E. Bergbower, and M. Smith, Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole, Molecular Biology of the Cell, vol.24, issue.12, pp.1974-1995
DOI : 10.1091/mbc.E12-11-0827

N. Arnaud, Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response, PLoS Pathogens, vol.4, issue.10, p.1002289, 2011.
DOI : 10.1371/journal.ppat.1002289.s013

URL : https://hal.archives-ouvertes.fr/pasteur-00635743

D. Akazawa, CD81 Expression Is Important for the Permissiveness of Huh7 Cell Clones for Heterogeneous Hepatitis C Virus Infection, Journal of Virology, vol.81, issue.10, pp.5036-5045, 2007.
DOI : 10.1128/JVI.01573-06

N. Arnaud, Hepatitis C Virus Controls Interferon Production through PKR Activation, PLoS ONE, vol.82, issue.5, p.10575, 2010.
DOI : 10.1371/journal.pone.0010575.s004

URL : https://hal.archives-ouvertes.fr/pasteur-00488757

P. Miller, Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells, Nature Cell Biology, vol.112, issue.9, pp.1069-1080, 2009.
DOI : 10.1242/dev.00989

S. Bolte and F. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, Journal of Microscopy, vol.56, issue.3, pp.213-232, 2006.
DOI : 10.1016/S0014-5793(03)00521-0

URL : https://hal.archives-ouvertes.fr/hal-00132481

K. Dunn, M. Kamocka, and J. Mcdonald, A practical guide to evaluating colocalization in biological microscopy, AJP: Cell Physiology, vol.300, issue.4, pp.723-742, 2011.
DOI : 10.1152/ajpcell.00462.2010

N. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening, Nature Methods, vol.4, issue.8, pp.783-784, 2014.
DOI : 10.1038/nbt.2647

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486245