H. Wu, Higher-Order Assemblies in a New Paradigm of Signal Transduction, Cell, vol.153, issue.2, pp.287-292, 2013.
DOI : 10.1016/j.cell.2013.03.013

A. Lu, Unified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes, Cell, vol.156, issue.6, pp.1193-1206, 2014.
DOI : 10.1016/j.cell.2014.02.008

P. Ge and Z. Zhou, Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches, Proceedings of the National Academy of Sciences, vol.54, issue.Pt 5, pp.9637-9642, 2011.
DOI : 10.1107/S0907444998003254

X. Yu and E. Egelman, Helical Filaments of Human Dmc1 Protein on Single-Stranded DNA: A Cautionary Tale, Journal of Molecular Biology, vol.401, issue.3, pp.544-551, 2010.
DOI : 10.1016/j.jmb.2010.06.049

H. Xu, Structural basis for the prion-like MAVS filaments in antiviral innate immunity, p.1489, 2014.

B. Wu, Molecular Imprinting as a Signal-Activation Mechanism of the Viral RNA Sensor RIG-I, Molecular Cell, vol.55, issue.4, pp.511-523, 2014.
DOI : 10.1016/j.molcel.2014.06.010

J. Li, E. Egelman, and L. Craig, Structure of the Vibrio cholerae Type IVb Pilus and Stability Comparison with the Neisseria gonorrhoeae Type IVa Pilus, Journal of Molecular Biology, vol.418, issue.1-2, pp.47-64, 2012.
DOI : 10.1016/j.jmb.2012.02.017

C. Wasmer, Amyloid Fibrils of the HET-s(218-289) Prion Form a ?? Solenoid with a Triangular Hydrophobic Core, Science, vol.32, issue.5, pp.1523-1526, 2008.
DOI : 10.1016/j.tibs.2007.03.003

A. Fitzpatrick, Atomic structure and hierarchical assembly of a cross-?? amyloid fibril, Proceedings of the National Academy of Sciences, vol.21, issue.21, pp.5468-5473, 2013.
DOI : 10.1093/emboj/cdf573

A. Paravastu, R. Leapman, W. Yau, and R. Tycko, Molecular structural basis for polymorphism in Alzheimer's ??-amyloid fibrils, Proceedings of the National Academy of Sciences, vol.114, issue.8, pp.18349-18354, 2008.
DOI : 10.1074/jbc.M611464200

G. Comellas and C. Rienstra, Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils, Annual Review of Biophysics, vol.42, issue.1, pp.515-536, 2013.
DOI : 10.1146/annurev-biophys-083012-130356

A. Schütz, Atomic-Resolution Three-Dimensional Structure of Amyloid ?? Fibrils Bearing the Osaka Mutation, Angewandte Chemie International Edition, vol.123, issue.1, pp.331-335, 2015.
DOI : 10.1002/anie.201408598

J. Lu, Molecular Structure of ??-Amyloid Fibrils in Alzheimer???s Disease Brain Tissue, Cell, vol.154, issue.6, pp.1257-1268, 2013.
DOI : 10.1016/j.cell.2013.08.035

A. Loquet, Atomic model of the type III secretion system needle, Nature, vol.309, issue.7402, pp.276-279, 2012.
DOI : 10.1038/nature11079

J. Demers, High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy, Nature Communications, vol.52, p.4976, 2014.
DOI : 10.1093/bioinformatics/btp033

A. Loquet, Atomic Structure and Handedness of the Building Block of a Biological Assembly, Journal of the American Chemical Society, vol.135, issue.51, pp.19135-19138, 2013.
DOI : 10.1021/ja411362q

E. Egelman, Reconstruction of Helical Filaments and Tubes, Methods Enzymol, vol.482, pp.167-183, 2010.
DOI : 10.1016/S0076-6879(10)82006-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245864

M. Yoneyama, K. Onomoto, M. Jogi, T. Akaboshi, and T. Fujita, Viral RNA detection by RIG-I-like receptors, Current Opinion in Immunology, vol.32, pp.48-53, 2015.
DOI : 10.1016/j.coi.2014.12.012

F. Hou, MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response, Cell, vol.146, issue.3, pp.448-461, 2011.
DOI : 10.1016/j.cell.2011.06.041

URL : http://doi.org/10.1016/j.cell.2011.06.041

R. Ferrao and H. Wu, Helical assembly in the death domain (DD) superfamily, Current Opinion in Structural Biology, vol.22, issue.2, pp.241-247, 2012.
DOI : 10.1016/j.sbi.2012.02.006

J. Potter, R. Randall, and G. Taylor, Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain, BMC Structural Biology, vol.8, issue.1, p.11, 2008.
DOI : 10.1186/1472-6807-8-11

L. He, T. Lührs, and C. Ritter, Solid-state NMR resonance assignments of the filament-forming CARD domain of the innate immunity signaling protein MAVS, Biomolecular NMR Assignments, vol.19, issue.2, pp.223-227, 2015.
DOI : 10.1007/s12104-014-9579-6

A. Loquet, K. Giller, S. Becker, and A. Lange, C Solid-State NMR Spectroscopy, Journal of the American Chemical Society, vol.132, issue.43, pp.15164-15166, 2010.
DOI : 10.1021/ja107460j

Y. Shen, F. Delaglio, G. Cornilescu, and A. Bax, TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts, Journal of Biomolecular NMR, vol.21, issue.4, pp.213-223, 2009.
DOI : 10.1007/s10858-009-9333-z

M. Hong, Determination of Multiple ??-Torsion Angles in Proteins by Selective and Extensive 13C Labeling and Two-Dimensional Solid-State NMR, Journal of Magnetic Resonance, vol.139, issue.2, pp.389-401, 1999.
DOI : 10.1006/jmre.1999.1805

F. Castellani, Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy, Nature, vol.359, issue.6911, pp.98-102, 2002.
DOI : 10.1063/1.470372

B. Bardiaux, T. Malliavin, and M. Nilges, ARIA for Solution and Solid-State NMR, Methods Mol Biol, vol.831, pp.453-483, 2012.
DOI : 10.1007/978-1-61779-480-3_23

URL : https://hal.archives-ouvertes.fr/pasteur-01459144

B. Pierce, W. Tong, and Z. Weng, M-ZDOCK: a grid-based approach for Cn symmetric multimer docking, Bioinformatics, vol.21, issue.8, pp.1472-1478, 2005.
DOI : 10.1093/bioinformatics/bti229

S. Potluri, A. Yan, J. Chou, B. Donald, and C. Bailey-kellogg, Structure determination of symmetric homo-oligomers by a complete search of symmetry configuration space, using NMR restraints and van der Waals packing, Proteins: Structure, Function, and Bioinformatics, vol.54, issue.1, pp.203-219, 2006.
DOI : 10.1002/prot.21091

X. Wang, S. Bansal, M. Jiang, and J. Prestegard, RDC-assisted modeling of symmetric protein homo-oligomers, Protein Science, vol.122, issue.5, pp.899-907, 2008.
DOI : 10.1110/ps.073395108

B. Bardiaux, B. Van-rossum, M. Nilges, and H. Oschkinat, Efficient Modeling of Symmetric Protein Aggregates from NMR Data, Angewandte Chemie International Edition, vol.54, issue.28, pp.6916-6919, 2012.
DOI : 10.1002/anie.201201783

A. Brunger, Version 1.2 of the Crystallography and NMR system, Nature Protocols, vol.50, issue.11, pp.2728-2733, 2007.
DOI : 10.1038/nprot.2007.406

W. Rieping, ARIA2: Automated NOE assignment and data integration in NMR structure calculation, Bioinformatics, vol.23, issue.3, pp.381-382, 2007.
DOI : 10.1093/bioinformatics/btl589

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.90

E. Egelman, N. Francis, and D. Derosier, F-actin is a helix with a random variable twist, Nature, vol.246, issue.5870, pp.131-135, 1982.
DOI : 10.1038/298131a0

A. Peisley, B. Wu, H. Xu, Z. Chen, and S. Hur, Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I, Nature, vol.28, issue.7498, pp.110-114, 2014.
DOI : 10.1038/nature13140

A. Peisley, B. Wu, H. Yao, T. Walz, and S. Hur, RIG-I Forms Signaling-Competent Filaments in an ATP-Dependent, Ubiquitin-Independent Manner, Molecular Cell, vol.51, issue.5, pp.573-583, 2013.
DOI : 10.1016/j.molcel.2013.07.024

URL : http://doi.org/10.1016/j.molcel.2013.07.024

A. Lu, Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2, Cell Discovery, vol.50, p.15013, 2015.
DOI : 10.1107/S0907444909052925

N. Sgourakis, Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings, Journal of the American Chemical Society, vol.133, issue.16, pp.6288-6298, 2011.
DOI : 10.1021/ja111318m

E. Mashiach-farkash, R. Nussinov, and H. Wolfson, SymmRef: A flexible refinement method for symmetric multimers, Proteins: Structure, Function, and Bioinformatics, vol.349, issue.Suppl 1, pp.2607-2623, 2011.
DOI : 10.1002/prot.23082

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155011

E. Karaca, A. Melquiond, S. De-vries, P. Kastritis, and A. Bonvin, Building Macromolecular Assemblies by Information-driven Docking: INTRODUCING THE HADDOCK MULTIBODY DOCKING SERVER, Molecular & Cellular Proteomics, vol.9, issue.8, pp.1784-1794, 2010.
DOI : 10.1074/mcp.M000051-MCP201

M. Tang, G. Comellas, and C. Rienstra, Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils, Accounts of Chemical Research, vol.46, issue.9, pp.2080-2088, 2013.
DOI : 10.1021/ar4000168

R. Tycko, Solid-State NMR Studies of Amyloid Fibril Structure, Annual Review of Physical Chemistry, vol.62, issue.1, pp.279-299, 2011.
DOI : 10.1146/annurev-physchem-032210-103539

O. Morag, N. Sgourakis, D. Baker, and A. Goldbourt, The NMR???Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope, Proceedings of the National Academy of Sciences, vol.115, issue.51, pp.971-976, 2015.
DOI : 10.1016/0022-2836(84)90309-7

R. Das, Simultaneous prediction of protein folding and docking at high resolution, Proceedings of the National Academy of Sciences, vol.38, issue.4, pp.18978-18983, 2009.
DOI : 10.1007/s10858-007-9166-6

J. Linge and M. Nilges, Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation, Journal of Biomolecular NMR, vol.13, issue.1, pp.51-59, 1999.
DOI : 10.1023/A:1008365802830

C. Gardiennet, A Sedimented Sample of a 59???kDa Dodecameric Helicase Yields High-Resolution Solid-State NMR Spectra, Angewandte Chemie International Edition, vol.51, issue.31, pp.7855-7858, 2012.
DOI : 10.1002/anie.201200779

URL : https://hal.archives-ouvertes.fr/hal-00965867

A. Loquet, G. Lv, K. Giller, S. Becker, and A. Lange, C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies, Journal of the American Chemical Society, vol.133, issue.13, pp.4722-4725, 2011.
DOI : 10.1021/ja200066s

W. Vranken, The CCPN data model for NMR spectroscopy: Development of a software pipeline, Proteins: Structure, Function, and Bioinformatics, vol.58, issue.4, pp.687-696, 2005.
DOI : 10.1002/prot.20449

M. Nilges, A calculation strategy for the structure determination of symmetric demers by1H NMR, Proteins: Structure, Function, and Genetics, vol.24, issue.3, pp.297-309, 1993.
DOI : 10.1002/prot.340170307

M. Campos, O. Francetic, and M. Nilges, Modeling pilus structures from sparse data, Journal of Structural Biology, vol.173, issue.3, pp.436-444, 2011.
DOI : 10.1016/j.jsb.2010.11.015

URL : https://hal.archives-ouvertes.fr/pasteur-01459921

R. Valentine, B. Shapiro, and E. Stadtman, Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli, Biochemistry, vol.7, issue.6, pp.2143-2152, 1968.
DOI : 10.1021/bi00846a017

P. Güntert, V. Dötsch, G. Wider, and K. Wüthrich, Processing of multi-dimensional NMR data with the new software PROSA, Journal of Biomolecular NMR, vol.113, issue.6, pp.619-629, 1992.
DOI : 10.1007/BF02192850

R. Keller, Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. PhD dissertation (Swiss Federal Institute of Technology, 2005.

L. Kay, D. Torchia, and A. Bax, Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease, Biochemistry, vol.28, issue.23, pp.8972-8979, 1989.
DOI : 10.1021/bi00449a003

P. Guerry and T. Herrmann, Comprehensive Automation for NMR Structure Determination of Proteins, Methods Mol Biol, vol.831, pp.429-451, 2012.
DOI : 10.1007/978-1-61779-480-3_22

URL : https://hal.archives-ouvertes.fr/hal-00955857

J. Doreleijers, CING: an integrated residue-based structure validation program suite, Journal of Biomolecular NMR, vol.25, issue.3, pp.267-283, 2012.
DOI : 10.1007/s10858-012-9669-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483101

A. Bakan, L. Meireles, and I. Bahar, ProDy: Protein Dynamics Inferred from Theory and Experiments, Bioinformatics, vol.27, issue.11, pp.1575-1577, 2011.
DOI : 10.1093/bioinformatics/btr168

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102222

A. Pintar, O. Carugo, and S. Pongor, DPX: for the analysis of the protein core, Bioinformatics, vol.19, issue.2, pp.313-314, 2003.
DOI : 10.1093/bioinformatics/19.2.313

P. Dosset, J. Hus, M. Blackledge, and D. Marion, Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data, Journal of Biomolecular NMR, vol.16, issue.1, pp.23-28, 2000.
DOI : 10.1023/A:1008305808620