A. Aguzzi and A. M. Calella, Prions: Protein Aggregation and Infectious Diseases, Physiological Reviews, vol.89, issue.4, pp.1105-1152, 2009.
DOI : 10.1152/physrev.00006.2009

S. F. Godsave, Cryo-Immunogold Electron Microscopy for Prions: Toward Identification of a Conversion Site, Journal of Neuroscience, vol.28, issue.47, pp.12489-12499, 2008.
DOI : 10.1523/JNEUROSCI.4474-08.2008

G. Mallucci, Depleting Neuronal PrP in Prion Infection Prevents Disease and Reverses Spongiosis, Science, vol.302, issue.5646, pp.871-874, 2003.
DOI : 10.1126/science.1090187

M. K. Sandberg, H. Al-doujaily, B. Sharps, A. R. Clarke, and J. Collinge, Prion propagation and toxicity in vivo occur in two distinct mechanistic phases, Nature, vol.21, issue.7335, pp.540-542, 2011.
DOI : 10.1038/nature09768

J. A. Moreno, Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prioninfected mice, Sci. Transl. Med, vol.5, pp.206-138, 2013.

C. Soto and N. Satani, The intricate mechanisms of neurodegeneration in prion diseases, Trends in Molecular Medicine, vol.17, issue.1, pp.14-24, 2011.
DOI : 10.1016/j.molmed.2010.09.001

M. Fuhrmann, G. Mitteregger, H. Kretzschmar, and J. Herms, Dendritic Pathology in Prion Disease Starts at the Synaptic Spine, Journal of Neuroscience, vol.27, issue.23, pp.6224-6233, 2007.
DOI : 10.1523/JNEUROSCI.5062-06.2007

U. Lalo, S. Rasooli-nejad, and Y. Pankratov, Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging, Biochemical Society Transactions, vol.22, issue.5, pp.1275-1281, 2014.
DOI : 10.1038/nn.2535

W. S. Chung, Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways, Nature, vol.22, issue.7480, pp.394-400, 2013.
DOI : 10.1016/j.neuron.2009.09.021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969024

A. Filosa, Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport, Nature Neuroscience, vol.25, issue.10, pp.1285-1292, 2009.
DOI : 10.1038/nn.2394

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922060

C. T. Jacobsen and R. Miller, Control of Astrocyte Migration in the Developing Cerebral Cortex, Developmental Neuroscience, vol.25, issue.2-4, pp.207-216, 2003.
DOI : 10.1159/000072269

M. Zonta, Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation, Nature Neuroscience, vol.258, issue.1, pp.43-50, 2003.
DOI : 10.1038/nn980

J. F. Diedrich, P. E. Bendheim, Y. S. Kim, R. I. Carp, and A. Haase, DOI: 10.1038/srep20762 13 Scrapie-associated prion protein accumulates in astrocytes during scrapie infection, Proc. Natl. Acad. Sci. USA, pp.375-379, 1991.

R. S. Hernández, R. Sarasa, A. Toledano, J. J. Badiola, and M. Monzón, Morphological approach to assess the involvement of astrocytes in prion propagation, Cell and Tissue Research, vol.28, issue.4, pp.57-63, 2014.
DOI : 10.1007/s00441-014-1928-3

S. Cronier, H. Laude, and J. M. Peyrin, Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death, Proc. Natl. Acad. Sci, pp.12271-12276, 2004.
DOI : 10.1002/ana.410110406

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514468

A. J. Raeber, Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie, The EMBO Journal, vol.16, issue.20, pp.6057-6065, 1997.
DOI : 10.1093/emboj/16.20.6057

M. Jeffrey, C. M. Goodsir, R. E. Race, and B. Chesebro, Scrapie-specific neuronal lesions are independent of neuronal PrP expression, Annals of Neurology, vol.278, issue.6, pp.781-792, 2004.
DOI : 10.1002/ana.20093

J. R. Hollister, K. S. Lee, D. W. Dorward, and G. S. Baron, Efficient Uptake and Dissemination of Scrapie Prion Protein by Astrocytes and Fibroblasts from Adult Hamster Brain, PLOS ONE, vol.23, issue.451, p.115351, 2015.
DOI : 10.1371/journal.pone.0115351.s010

Z. Marijanovic, A. Caputo, V. Campana, and C. Zurzolo, Identification of an Intracellular Site of Prion Conversion, PLoS Pathogens, vol.38, issue.4, p.1000426, 2009.
DOI : 10.1371/journal.ppat.1000426.s009

URL : https://hal.archives-ouvertes.fr/pasteur-00396879

K. Uchiyama, Prions disturb post-Golgi trafficking of membrane proteins, Nature Communications, vol.21, p.1846, 2013.
DOI : 10.1038/ncomms2873

S. Zhu, G. S. Victoria, L. Marzo, R. Ghosh, and C. Zurzolo, Prion aggregates transfer through tunneling nanotubes in endocytic vesicles, Prion, vol.7, issue.2, pp.125-135, 2015.
DOI : 10.1038/nmeth.2075

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601206

A. Rouvinski, in cell-surface, raft-associated amyloid strings and webs, The Journal of Cell Biology, vol.72, issue.3, pp.423-441, 2014.
DOI : 10.1083/jcb.201308028.dv

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912534

E. E. Spangenburg, S. J. Pratt, L. M. Wohlers, and R. M. Lovering, Use of BODIPY (493/503) to Visualize Intramuscular Lipid Droplets in Skeletal Muscle, Journal of Biomedicine and Biotechnology, vol.50, issue.4, p.598358, 2011.
DOI : 10.1002/cyto.990170207

F. De-chaumont, Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, issue.7, pp.690-696, 2012.
DOI : 10.1038/nmeth.2075

H. Büeler, Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein, Nature, vol.356, issue.6370, pp.577-582, 1992.
DOI : 10.1038/356577a0

G. A. Davies, A. R. Bryant, J. D. Reynolds, F. R. Jirik, and K. A. Sharkey, Prion Diseases and the Gastrointestinal Tract, Canadian Journal of Gastroenterology, vol.20, issue.1, pp.18-24, 2006.
DOI : 10.1155/2006/184528

URL : http://doi.org/10.1155/2006/184528

B. Fevrier, Cells release prions in association with exosomes, Proc. Natl. Acad. Sci. USA, pp.9683-9688, 2004.
DOI : 10.1247/csf.27.443

K. Gousset, Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

T. Liu, Intercellular Transfer of the Cellular Prion Protein, Journal of Biological Chemistry, vol.277, issue.49, pp.47671-47678, 2002.
DOI : 10.1074/jbc.M207458200

S. Cronier, Endogenous prion protein conversion is required for prion-induced neuritic alterations and neuronal death, The FASEB Journal, vol.26, issue.9, pp.3854-3861, 2012.
DOI : 10.1096/fj.11-201772

I. Bjorkhem, V. Leoni, and S. Meaney, Genetic connections between neurological disorders and cholesterol metabolism, The Journal of Lipid Research, vol.51, issue.9, pp.2489-2503, 2010.
DOI : 10.1194/jlr.R006338

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918434

C. Göritz, D. H. Mauch, K. Nägler, and F. W. Pfrieger, Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse???glia affair, Journal of Physiology-Paris, vol.96, issue.3-4, pp.257-263, 2002.
DOI : 10.1016/S0928-4257(02)00014-1

F. W. Pfrieger, Outsourcing in the brain: Do neurons depend on cholesterol delivery by astrocytes?, BioEssays, vol.219, issue.1, pp.72-78, 2003.
DOI : 10.1002/bies.10195

W. S. Chung, Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways, Nature, vol.22, issue.7480, pp.394-400, 2013.
DOI : 10.1016/j.neuron.2009.09.021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969024

Y. P. Choi, M. W. Head, J. W. Ironside, and S. A. Priola, Uptake and Degradation of Protease-Sensitive and -Resistant Forms of Abnormal Human Prion Protein Aggregates by Human Astrocytes, The American Journal of Pathology, vol.184, issue.12, pp.3299-3307, 2014.
DOI : 10.1016/j.ajpath.2014.08.005

M. M. Pearce, E. J. Spartz, W. Hong, L. Luo, and R. R. Kopito, Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain, Nature Communications, vol.6, p.6768, 2015.
DOI : 10.1186/1471-2105-9-346

T. Wyss-coray, Adult mouse astrocytes degrade amyloid-?? in vitro and in situ, Nature Medicine, vol.9, issue.4, pp.453-457, 2003.
DOI : 10.1038/nm838

W. S. Jackson, C. Krost, A. W. Borkowski, and L. Kaczmarczyk, Translation of the Prion Protein mRNA Is Robust in Astrocytes but Does Not Amplify during Reactive Astrocytosis in the Mouse Brain, PLoS ONE, vol.12, issue.4, p.95958, 2014.
DOI : 10.1371/journal.pone.0095958.g005

Z. E. Arellano-anaya, Prion strains are differentially released through the exosomal pathway, Cellular and Molecular Life Sciences, vol.6, issue.12, pp.1185-1196, 2014.
DOI : 10.1007/s00018-014-1735-8

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1010, 2004.
DOI : 10.1126/science.1093133

X. Wang, N. V. Bukoreshtliev, and H. H. Gerdes, Developing Neurons Form Transient Nanotubes Facilitating Electrical Coupling and Calcium Signaling with Distant Astrocytes, PLoS ONE, vol.7, issue.10, p.47429, 2012.
DOI : 10.1371/journal.pone.0047429.s002

URL : http://doi.org/10.1371/journal.pone.0047429

S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes - from electrical signals to organelle transfer, Journal of Cell Science, vol.125, issue.5, pp.1089-1098, 2012.
DOI : 10.1242/jcs.083279

URL : https://hal.archives-ouvertes.fr/pasteur-00716392

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted Roles of Tunneling Nanotubes in Intercellular Communication, Frontiers in Physiology, vol.3, p.72, 2012.
DOI : 10.3389/fphys.2012.00072

URL : https://hal.archives-ouvertes.fr/pasteur-00716379

M. Costanzo, Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, Journal of Cell Science, vol.126, issue.16, pp.3678-3685, 2013.
DOI : 10.1242/jcs.126086

URL : https://hal.archives-ouvertes.fr/pasteur-00874692

C. Langevin, K. Gousset, M. Costanzo, R. Goff, O. Zurzolo et al., Characterization of the role of dendritic cells in prion transfer to primary neurons, Biochemical Journal, vol.71, issue.2, pp.189-198, 2010.
DOI : 10.1016/j.febslet.2009.03.065

URL : https://hal.archives-ouvertes.fr/hal-00521557

M. Nedergaard, Direct signaling from astrocytes to neurons in cultures of mammalian brain cells, Science, vol.263, issue.5154, pp.1768-1771, 1994.
DOI : 10.1126/science.8134839

X. Wang, M. L. Veruki, N. V. Bukoreshtliev, E. Hartveit, and H. H. Gerdes, Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels, Proc. Natl. Acad. Sci. USA, pp.17194-17199, 2010.
DOI : 10.1152/ajpcell.00259.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951457