T. Johnson, J. Abendroth, W. Hol, and M. Sandkvist, Type II secretion: from structure to function, FEMS Microbiology Letters, vol.255, issue.2, pp.175-186, 2006.
DOI : 10.1111/j.1574-6968.2006.00102.x

B. Hazes and L. Frost, Towards a systems biology approach to study type II/IV secretion systems, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.9, pp.1839-1850, 2008.
DOI : 10.1016/j.bbamem.2008.03.011

N. Sauvonnet, G. Vignon, A. Pugsley, and P. Gounon, Pilus formation and protein secretion by the same machinery in Escherichia coli, The EMBO Journal, vol.96, issue.10, pp.2221-2228, 2000.
DOI : 10.1093/emboj/19.10.2221

G. Vignon, Type IV-Like Pili Formed by the Type II Secreton: Specificity, Composition, Bundling, Polar Localization, and Surface Presentation of Peptides, Journal of Bacteriology, vol.185, issue.11, pp.3416-3428, 2003.
DOI : 10.1128/JB.185.11.3416-3428.2003

E. Durand, Type II Protein Secretion in Pseudomonas aeruginosa: the Pseudopilus Is a Multifibrillar and Adhesive Structure, Journal of Bacteriology, vol.185, issue.9, pp.2749-2758, 2003.
DOI : 10.1128/JB.185.9.2749-2758.2003

B. Py, F. Loiseau, and F. Barras, An inner membrane platform in the type II secretion machinery of Gram-negative bacteria, EMBO reports, vol.143, issue.3, pp.244-248, 2001.
DOI : 10.1093/embo-reports/kve042

L. Craig, Type IV Pilus Structure by Cryo-Electron Microscopy and Crystallography: Implications for Pilus Assembly and Functions, Molecular Cell, vol.23, issue.5, pp.651-662, 2006.
DOI : 10.1016/j.molcel.2006.07.004

URL : http://doi.org/10.1016/j.molcel.2006.07.004

V. Shevchik, J. Robert-baudouy, and G. Condemine, Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins, The EMBO Journal, vol.16, issue.11, pp.3007-3016, 1997.
DOI : 10.1093/emboj/16.11.3007

R. Kohler, Structure and assembly of the pseudopilin PulG, Molecular Microbiology, vol.19, issue.3, pp.647-664, 2004.
DOI : 10.1111/j.1365-2958.2004.04307.x

O. Francetic, N. Buddelmeijer, S. Lewenza, C. Kumamoto, and A. Pugsley, Signal Recognition Particle-Dependent Inner Membrane Targeting of the PulG Pseudopilin Component of a Type II Secretion System, Journal of Bacteriology, vol.189, issue.5, pp.1783-1793, 2007.
DOI : 10.1128/JB.01230-06

URL : https://hal.archives-ouvertes.fr/hal-00138935

O. Possot, G. Vignon, N. Bomchil, F. Ebel, and A. Pugsley, Multiple Interactions between Pullulanase Secreton Components Involved in Stabilization and Cytoplasmic Membrane Association of PulE, Journal of Bacteriology, vol.182, issue.8, pp.2142-2152, 2000.
DOI : 10.1128/JB.182.8.2142-2152.2000

K. Korotkov, Calcium Is Essential for the Major Pseudopilin in the Type 2 Secretion System, Journal of Biological Chemistry, vol.284, issue.38, pp.25466-25470, 2009.
DOI : 10.1074/jbc.C109.037655

L. Craig, Type IV Pilin Structure and Assembly, Molecular Cell, vol.11, issue.5, pp.1139-1150, 2003.
DOI : 10.1016/S1097-2765(03)00170-9

URL : http://doi.org/10.1016/s1097-2765(03)00170-9

M. Strom and L. S. , Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly, 1991.

O. Francetic and A. Pugsley, Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca, Journal of Bacteriology, vol.187, issue.20, pp.7045-7055, 2005.
DOI : 10.1128/JB.187.20.7045-7055.2005

J. Li, Vibrio cholerae Toxin-Coregulated Pilus Structure Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry, Structure, vol.16, issue.1, pp.137-148, 2008.
DOI : 10.1016/j.str.2007.10.027

URL : http://doi.org/10.1016/j.str.2007.10.027

M. Chinchio, C. Czaplewski, A. Liwo, S. Oldzej, and H. Scheraga, Dynamic Formation and Breaking of Disulfide Bonds in Molecular Dynamics Simulations with the UNRES Force Field, Journal of Chemical Theory and Computation, vol.3, issue.4, pp.1236-1248, 2007.
DOI : 10.1021/ct7000842

Y. Cheng and T. Walz, The Advent of Near-Atomic Resolution in Single-Particle Electron Microscopy, Annual Review of Biochemistry, vol.78, issue.1, pp.723-742, 2009.
DOI : 10.1146/annurev.biochem.78.070507.140543

F. Aas, Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions, Molecular Microbiology, vol.266, issue.1, 2007.
DOI : 10.1073/pnas.89.12.5366

K. Korotkov and W. Hol, Structure of the GspK???GspI???GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system, Nature Structural & Molecular Biology, vol.175, issue.5, pp.462-468, 2008.
DOI : 10.1107/S0907444906005270

B. Douzi, The XcpV/GspI Pseudopilin Has a Central Role in the Assembly of a Quaternary Complex within the T2SS Pseudopilus, Journal of Biological Chemistry, vol.284, issue.50, pp.34580-34589, 2009.
DOI : 10.1074/jbc.M109.042366

K. Forest, The type II secretion arrowhead: the structure of GspI???GspJ???GspK, Nature Structural & Molecular Biology, vol.15, issue.5, 2008.
DOI : 10.1016/S0959-440X(00)00129-9

S. Alphonse, Structure of thePseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system, Journal of Structural Biology, vol.169, issue.1, pp.75-80, 2010.
DOI : 10.1016/j.jsb.2009.09.003

Q. Wang, A. Canutescu, and R. Dunbrack, SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling, Nature Protocols, vol.102, issue.12, pp.1832-1847, 2008.
DOI : 10.1016/j.jmb.2007.10.060

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682191

A. Brunger, Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-921, 1998.
DOI : 10.1107/S0907444998003254

M. Nilges, B. Bardiaux, and T. Malliavin, Protein structure calculation using ambiguous restraints. Encyclopedia of Magnetic Resonance, 2010.
DOI : 10.1002/9780470034590.emrstm1156

N. Calimet, M. Schaefer, and T. Simonson, Protein molecular dynamics with the generalized born/ACE solvent model, Proteins: Structure, Function, and Genetics, vol.3, issue.2, pp.144-158, 2001.
DOI : 10.1002/prot.1134

L. Moulinier, D. Case, and T. Simonson, Reintroducing electrostatics into protein X-ray structure refinement: bulk solvent treated as a dielectric continuum, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.12, pp.2094-2103, 2003.
DOI : 10.1107/S090744490301833X

URL : https://hal.archives-ouvertes.fr/hal-00770916

B. Brooks, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.I, issue.2, pp.187-217, 1983.
DOI : 10.1002/jcc.540040211

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.377, issue.6547, pp.10037-10041, 2001.
DOI : 10.1038/377309a0

J. Linge, M. Williams, C. Spronk, A. Bonvin, and M. Nilges, Refinement of protein structures in explicit solvent, Proteins: Structure, Function, and Bioinformatics, vol.8, issue.3, pp.496-506, 2003.
DOI : 10.1002/prot.10299

W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, and M. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-935, 1983.
DOI : 10.1016/0009-2614(80)85344-9

M. Nilges, Accurate NMR Structures Through Minimization of an Extended Hybrid Energy, Structure, vol.16, issue.9, pp.1305-1312, 2008.
DOI : 10.1016/j.str.2008.07.008

R. Laskowski, M. Macarthur, D. Moss, and J. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

L. Moulinier, D. Case, and T. Simonson, Reintroducing electrostatics into protein X-ray structure refinement: bulk solvent treated as a dielectric continuum, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.12, pp.2094-2103, 2003.
DOI : 10.1107/S090744490301833X

URL : https://hal.archives-ouvertes.fr/hal-00770916

V. Lafont, M. Schaefer, R. Stote, D. Altschuh, and A. Dejaegere, Protein-protein recognition and interaction hot spots in an antigen-antibody complex: Free energy decomposition identifies ???efficient amino acids???, Proteins: Structure, Function, and Bioinformatics, vol.101, issue.2, pp.418-434, 2007.
DOI : 10.1002/prot.21259

URL : https://hal.archives-ouvertes.fr/hal-00190960

B. Bartolomé, Y. Jubete, E. Martinez, and F. De-la-cruz, Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives, Gene, vol.102, issue.1, pp.75-78, 1991.
DOI : 10.1016/0378-1119(91)90541-I

C. Enfert, A. Ryter, and A. Pugsley, Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase, EMBO J, vol.6, pp.3531-3538, 1987.

O. Possot, G. Vignon, N. Bomchil, F. Ebel, and A. Pugsley, Multiple Interactions between Pullulanase Secreton Components Involved in Stabilization and Cytoplasmic Membrane Association of PulE, Journal of Bacteriology, vol.182, issue.8, pp.2142-2152, 2000.
DOI : 10.1128/JB.182.8.2142-2152.2000

S. Movie, Modeling run of the T2S pilus Each frame represents a step in the modeling process with all of the implicit protomers represented by symmetry. Protomers are attracted toward the pilus axis, are arranged first in a left-handed helix, and then converge toward one of the right-handed helix models in the main cluster