I. Weissman, Stepwise development of committed progenitors in the bone marrow that generate functional T cells in the absence of the thymus, J Immunol, vol.175, issue.7, pp.4363-73, 2005.

B. Rocha, P. Vassalli, and D. Guy-grand, Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice, Journal of Experimental Medicine, vol.180, issue.2, pp.681-687, 1994.
DOI : 10.1084/jem.180.2.681

K. Sato, K. Ohtsuka, K. Hasegawa, S. Yamagiwa, H. Watanabe et al., Evidence for extrathymic generation of intermediate T cell receptor cells in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation, Journal of Experimental Medicine, vol.182, issue.3, pp.759-67, 1995.
DOI : 10.1084/jem.182.3.759

K. Akashi, D. Traver, T. Miyamoto, and I. Weissman, A clonogenic common myeloid progenitor that gives rise to all myeloid lineages, Nature, vol.362, issue.6774, pp.193-200, 2000.
DOI : 10.1038/35004599

M. Kondo, I. Weissman, and K. Akashi, Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow, Cell, vol.91, issue.5, pp.661-72, 1997.
DOI : 10.1016/S0092-8674(00)80453-5

A. Bhandoola, H. Von-boehmer, H. Petrie, and J. Zuniga-pflucker, Commitment and Developmental Potential of Extrathymic and Intrathymic T Cell Precursors: Plenty to Choose from, Immunity, vol.26, issue.6, 2007.
DOI : 10.1016/j.immuni.2007.05.009

C. Martin, I. Aifantis, M. Scimone, U. Von-andrian, B. Reizis et al., Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential, Nature Immunology, vol.4, issue.9, 2003.
DOI : 10.1038/ni965

M. Scimone, I. Aifantis, I. Apostolou, H. Von-boehmer, and U. Von-andrian, A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus, Proceedings of the National Academy of Sciences, vol.10, issue.4, pp.7006-7017, 2006.
DOI : 10.1016/S1074-7613(00)80046-1

J. Bell and A. Bhandoola, The earliest thymic progenitors for T cells possess myeloid lineage potential, Nature, vol.20, issue.7188
DOI : 10.1038/nature06840

H. Wada, K. Masuda, R. Satoh, K. Kakugawa, T. Ikawa et al., Adult T-cell progenitors retain myeloid potential, Nature, vol.194, issue.7188, pp.768-72, 2008.
DOI : 10.1038/nature06839

J. Adolfsson, R. Mansson, N. Buza-vidas, A. Hultquist, K. Liuba et al., Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential, Cell, vol.121, issue.2, pp.295-306, 2005.
DOI : 10.1016/j.cell.2005.02.013

M. Lu, H. Kawamoto, Y. Katsube, T. Ikawa, and Y. Katsura, The Common Myelolymphoid Progenitor: A Key Intermediate Stage in Hemopoiesis Generating T and B Cells, The Journal of Immunology, vol.169, issue.7, pp.3519-3544, 2002.
DOI : 10.4049/jimmunol.169.7.3519

A. Chi, J. Bell, D. Zlotoff, and A. Bhandoola, Untangling the T branch of the hematopoiesis tree, Current Opinion in Immunology, vol.21, issue.2
DOI : 10.1016/j.coi.2009.01.012

K. Akashi, L. Richie, T. Miyamoto, W. Carr, and I. Weissman, B Lymphopoiesis in the Thymus, The Journal of Immunology, vol.164, issue.10
DOI : 10.4049/jimmunol.164.10.5221

G. Balciunaite, R. Ceredig, and A. Rolink, The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential, Blood, vol.105, issue.5, pp.1930-1936, 2005.
DOI : 10.1182/blood-2004-08-3087

C. Benz, C. Bleul, L. Rumfelt, S. Tabrizifard, T. Schmitt et al., A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity, J Exp Med, vol.20220, issue.176, pp.21-31735, 2004.

J. Carlyle, A. Michie, C. Furlonger, T. Nakano, M. Lenardo et al., Identification of a Novel Developmental Stage Marking Lineage Commitment of Progenitor Thymocytes, The Journal of Experimental Medicine, vol.158, issue.2, pp.173-82, 1997.
DOI : 10.1084/jem.184.3.903

H. Rodewald, P. Moingeon, J. Lucich, C. Dosiou, P. Lopez et al., A population of early fetal thymocytes expressing Fc??RIIIII contains precursors of T lymphocytes and natural killer cells, Cell, vol.69, issue.1, pp.139-50, 1992.
DOI : 10.1016/0092-8674(92)90125-V

A. Michie, J. Carlyle, T. Schmitt, B. Ljutic, S. Cho et al., Clonal characterization of a bipotent T cell and NK cell progenitor in the mouse fetal thymus Identification of a common T/natural killer cell progenitor in human fetal thymus, J Immunol. Feb J Exp Med, vol.15164180, issue.212, pp.1730-3569, 1994.

M. Sanchez, H. Spits, L. Lanier, and J. Phillips, Human natural killer cell committed thymocytes and their relation to the T cell lineage, Journal of Experimental Medicine, vol.178, issue.6, pp.1857-66, 1993.
DOI : 10.1084/jem.178.6.1857

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191276

O. Haller and H. Wigzell, Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent, J Immunol, vol.118, issue.4, pp.1503-1509, 1977.

I. Puzanov, M. Bennett, and V. Kumar, IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells, J Immunol, vol.157, issue.10, pp.4282-4287, 1996.

D. Santo, J. Vosshenrich, and C. , Satoh-Takayama N. A 'natural' way to provide innate mucosal immunity

E. Rosmaraki, I. Douagi, C. Roth, F. Colucci, A. Cumano et al., Identification of committed NK cell progenitors in adult murine bone marrow, European Journal of Immunology, vol.30, issue.6, pp.1900-1909, 2001.
DOI : 10.1002/1521-4141(200106)31:6<1900::AID-IMMU1900>3.0.CO;2-M

N. Charoudeh, H. Tang, Y. Cheng, M. Cilio, C. Jacobsen et al., Identification of an NK/T cell-restricted progenitor in adult bone marrow contributing to bone marrow- and thymic-dependent NK cells, Blood, vol.116, issue.2, 2010.
DOI : 10.1182/blood-2009-10-247130

D. Godfrey, J. Kennedy, T. Suda, and A. Zlotnik, A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8-triple-negative adult mouse thymocytes defined by CD44 and CD25 expression, J Immunol, vol.150, issue.10, pp.4244-52, 1993.

D. Godfrey, A. Zlotnik, and T. Suda, Phenotypic and functional characterization of c-kit expression during intrathymic T cell development, J Immunol, vol.149, issue.7, pp.2281-2286, 1992.

T. Ikawa, H. Kawamoto, S. Fujimoto, and Y. Katsura, Commitment of Common T/Natural Killer (Nk) Progenitors to Unipotent T and Nk Progenitors in the Murine Fetal Thymus Revealed by a Single Progenitor Assay, The Journal of Experimental Medicine, vol.129, issue.11
DOI : 10.1016/S1074-7613(00)80638-X

M. Lu, R. Tayu, T. Ikawa, K. Masuda, I. Matsumoto et al., The Earliest Thymic Progenitors in Adults Are Restricted to T, NK, and Dendritic Cell Lineage and Have a Potential to Form More Diverse TCR?? Chains than Fetal Progenitors, The Journal of Immunology, vol.175, issue.9, pp.5848-56, 2005.
DOI : 10.4049/jimmunol.175.9.5848

H. Shen, M. Lu, T. Ikawa, K. Masuda, K. Ohmura et al., T/NK Bipotent Progenitors in the Thymus Retain the Potential to Generate Dendritic Cells, The Journal of Immunology, vol.171, issue.7, pp.3401-3407, 2003.
DOI : 10.4049/jimmunol.171.7.3401

L. Wu, C. Li, and K. Shortman, Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny, Journal of Experimental Medicine, vol.184, issue.3, pp.903-914, 1996.
DOI : 10.1084/jem.184.3.903

K. Masuda, K. Kakugawa, T. Nakayama, N. Minato, Y. Katsura et al., T Cell Lineage Determination Precedes the Initiation of TCR?? Gene Rearrangement, The Journal of Immunology, vol.179, issue.6, pp.3699-706, 2007.
DOI : 10.4049/jimmunol.179.6.3699

H. Igarashi, S. Gregory, T. Yokota, N. Sakaguchi, and P. Kincade, Transcription from the RAG1 Locus Marks the Earliest Lymphocyte Progenitors in Bone Marrow, Immunity, vol.17, issue.2, pp.117-147, 2002.
DOI : 10.1016/S1074-7613(02)00366-7

I. Ho and S. Pai, GATA-3 -not just for Th2 cells anymore, Cell Mol Immunol. Feb, vol.4, issue.1, pp.15-29, 2007.

K. Hozumi, M. Kondo, H. Nozaki, A. Kobori, T. Nishimura et al., Implication of the common gamma chain of the IL-7 receptor in intrathymic development of pro-T cells, Int Immunol, 1994.

M. Yui, N. Feng, and E. Rothenberg, Fine-Scale Staging of T Cell Lineage Commitment in Adult Mouse Thymus, The Journal of Immunology, vol.185, issue.1, pp.284-93, 2010.
DOI : 10.4049/jimmunol.1000679

J. Peschon, P. Morrissey, K. Grabstein, F. Ramsdell, E. Maraskovsky et al., Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine, J Exp Med J Exp Med, vol.180181, issue.404, pp.1955-601519, 1994.

M. Wiles, P. Ruiz, and B. Imhof, Interleukin-7 expression during mouse thymus development, European Journal of Immunology, vol.127, issue.4, pp.1037-1079, 1992.
DOI : 10.1002/eji.1830220424

K. Tokoyoda, T. Egawa, T. Sugiyama, B. Choi, T. Nagasawa et al., Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells, Nat Immunol, vol.208, issue.611, pp.707-181255, 2004.
DOI : 10.1016/j.immuni.2004.05.001

URL : http://doi.org/10.1016/j.immuni.2004.05.001

J. Disanto, Cytokines: Shared receptors, distinct functions, Current Biology, vol.7, issue.7, pp.424-430, 1997.
DOI : 10.1016/S0960-9822(06)00208-9

J. Kang and S. Der, Cytokine functions in the formative stages of a lymphocyte???s life, Current Opinion in Immunology, vol.16, issue.2
DOI : 10.1016/j.coi.2004.02.002

K. Maki, S. Sunaga, Y. Komagata, Y. Kodaira, A. Mabuchi et al., Interleukin 7 receptor-deficient mice lack gammadelta T cells., Proceedings of the National Academy of Sciences, vol.93, issue.14, pp.7172-7179, 1996.
DOI : 10.1073/pnas.93.14.7172

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC38955

T. Moore, U. Von-freeden-jeffry, R. Murray, and A. Zlotnik, Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/-mice, J Immunol, vol.157, issue.6, pp.2366-73, 1996.

K. Akashi, M. Kondo, U. Von-freeden-jeffry, R. Murray, and I. Weissman, Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell, pp.1033-1074, 1997.

D. Santo, J. Aifantis, I. Rosmaraki, E. Garcia, C. Feinberg et al., The common cytokine receptor gamma chain and the pre-T cell receptor provide independent but critically overlapping signals in early alpha/beta T cell development, J Exp Med Feb, vol.1189, issue.3, pp.563-74, 1999.

J. Park, S. Adoro, T. Guinter, B. Erman, A. Alag et al., Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells, Nature Immunology, vol.163, issue.3, pp.257-64, 2010.
DOI : 10.1016/S0092-8674(00)80048-3

Q. Yu, J. Park, L. Doan, B. Erman, L. Feigenbaum et al., Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection, The Journal of Experimental Medicine, vol.66, issue.1, pp.165-75, 2006.
DOI : 10.1038/ni1211

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118084

Q. Yu, B. Erman, J. Park, L. Feigenbaum, A. Singer et al., IL-7 receptor signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat: impact on thymocyte development The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance, J Exp Med Sep J, vol.20200, issue.53, pp.797-803, 2004.

L. Bradley, L. Haynes, and S. Swain, IL-7: maintaining T-cell memory and achieving homeostasis, Trends in Immunology, vol.26, issue.3, pp.172-178, 2005.
DOI : 10.1016/j.it.2005.01.004

C. Vosshenrich, T. Ranson, S. Samson, E. Corcuff, F. Colucci et al., Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo, J Immunol. Feb, vol.1174, issue.3, pp.1213-1234, 2005.

C. Vosshenrich, M. Garcia-ojeda, S. Samson-villeger, V. Pasqualetto, L. Enault et al., Erratum: A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127, Nature Immunology, vol.7, issue.12, pp.1217-1241, 2006.
DOI : 10.1038/ni1206-1343b

H. Petrie and J. Zuniga-pflucker, Zoned Out: Functional Mapping of Stromal Signaling Microenvironments in the Thymus, Annual Review of Immunology, vol.25, issue.1, pp.649-79, 2007.
DOI : 10.1146/annurev.immunol.23.021704.115715

J. Giri, D. Anderson, S. Kumaki, L. Park, K. Grabstein et al., IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2, J Leukoc Biol, vol.57, issue.5, pp.763-769, 1995.
DOI : 10.1016/1043-4666(94)90167-8

J. Burton, R. Bamford, C. Peters, A. Grant, G. Kurys et al., A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells., Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.4935-4944, 1994.
DOI : 10.1073/pnas.91.11.4935

J. Giri, M. Ahdieh, J. Eisenman, K. Shanebeck, K. Grabstein et al., Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15, EMBO J, vol.13, issue.12, pp.2822-2852, 1994.

G. Leclercq, V. Debacker, M. De-smedt, and J. Plum, Differential effects of interleukin-15 and interleukin

J. Giri, S. Kumaki, M. Ahdieh, D. Friend, A. Loomis et al., Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor, EMBO J, 1995.

M. Kennedy, M. Glaccum, S. Brown, E. Butz, J. Viney et al., Reversible Defects in Natural Killer and Memory Cd8 T Cell Lineages in Interleukin 15???Deficient Mice, The Journal of Experimental Medicine, vol.10, issue.5, pp.771-80, 2000.
DOI : 10.1093/intimm/9.9.1367

T. Ranson, C. Vosshenrich, E. Corcuff, O. Richard, W. Muller et al., IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood, Jun, vol.15101, issue.12, pp.4887-93, 2003.

A. Ma, R. Koka, and P. Burkett, DIVERSE FUNCTIONS OF IL-2, IL-15, AND IL-7 IN LYMPHOID HOMEOSTASIS, Annual Review of Immunology, vol.24, issue.1, pp.657-79, 2006.
DOI : 10.1146/annurev.immunol.24.021605.090727

M. Cheng, H. Charoudeh, P. Brodin, Y. Tang, T. Lakshmikanth et al., Distinct and Overlapping Patterns of Cytokine Regulation of Thymic and Bone Marrow-Derived NK Cell Development, The Journal of Immunology, vol.182, issue.3, pp.1460-1468, 2009.
DOI : 10.4049/jimmunol.182.3.1460

F. Radtke, A. Wilson, G. Stark, M. Bauer, J. Van-meerwijk et al., Deficient T Cell Fate Specification in Mice with an Induced Inactivation of Notch1, Immunity, vol.10, issue.5, pp.547-58, 1999.
DOI : 10.1016/S1074-7613(00)80054-0

A. Wilson, H. Macdonald, and F. Radtke, Notch 1???Deficient Common Lymphoid Precursors Adopt a B Cell Fate in the Thymus, The Journal of Experimental Medicine, vol.246, issue.7, pp.1003-1015, 2001.
DOI : 10.1016/0167-5699(95)80179-0

J. Pui, D. Allman, L. Xu, S. Derocco, F. Karnell et al., Notch1 Expression in Early Lymphopoiesis Influences B versus T Lineage Determination, Immunity, vol.11, issue.3, pp.299-308, 1999.
DOI : 10.1016/S1074-7613(00)80105-3

URL : http://doi.org/10.1016/s1074-7613(00)80105-3

T. Washburn, E. Schweighoffer, T. Gridley, D. Chang, B. Fowlkes et al., Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell, pp.833-876, 1997.
DOI : 10.1016/s0092-8674(00)81929-7

URL : http://doi.org/10.1016/s0092-8674(00)81929-7

E. Robey, D. Chang, A. Itano, D. Cado, H. Alexander et al., An Activated Form of Notch Influences the Choice between CD4 and CD8 T Cell Lineages, Cell, vol.87, issue.3, pp.483-92, 1996.
DOI : 10.1016/S0092-8674(00)81368-9

D. Amsen, A. Antov, D. Jankovic, A. Sher, F. Radtke et al., Direct Regulation of Gata3 Expression Determines the T Helper Differentiation Potential of Notch, Immunity, vol.27, issue.1, pp.89-99, 2007.
DOI : 10.1016/j.immuni.2007.05.021

C. Lindsell, C. Shawber, J. Boulter, and G. Weinmaster, Jagged: A mammalian ligand that activates notch1, Cell, vol.80, issue.6
DOI : 10.1016/0092-8674(95)90294-5

URL : http://doi.org/10.1016/0092-8674(95)90294-5

C. Shawber, J. Boulter, C. Lindsell, and G. Weinmaster, Jagged2: A Serrate-like Gene Expressed during Rat Embryogenesis, Developmental Biology, vol.180, issue.1, pp.370-376, 1996.
DOI : 10.1006/dbio.1996.0310

URL : http://doi.org/10.1006/dbio.1996.0310

B. Bettenhausen, H. De-angelis, M. Simon, D. Guenet, J. Gossler et al., Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta

S. Dunwoodie, H. D. Harrison, S. Beddington, and R. , Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo, Development, vol.124, issue.16, pp.3065-76, 1997.

F. Radtke, A. Wilson, S. Mancini, and H. Macdonald, Notch regulation of lymphocyte development and function, Nature Immunology, vol.164, issue.3, pp.247-53, 2004.
DOI : 10.1038/ni1045

T. Schmitt and J. Zuniga-pflucker, Induction of T Cell Development from Hematopoietic Progenitor Cells by Delta-like-1 In Vitro, Immunity, vol.17, issue.6, pp.749-56, 2002.
DOI : 10.1016/S1074-7613(02)00474-0

K. Hozumi, C. Mailhos, N. Negishi, K. Hirano, T. Yahata et al., Delta-like 4 is indispensable in thymic environment specific for T cell development, The Journal of Experimental Medicine, vol.18, issue.11, pp.2507-2520, 2008.
DOI : 10.1006/scdb.1998.0266

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571926

U. Koch, E. Fiorini, R. Benedito, V. Besseyrias, K. Schuster-gossler et al., Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment, The Journal of Experimental Medicine, vol.105, issue.11, pp.2515-2538, 2008.
DOI : 10.1038/71540

T. Hosoya, T. Kuroha, T. Moriguchi, D. Cummings, I. Maillard et al., GATA-3 is required for early T lineage progenitor development, The Journal of Experimental Medicine, vol.19, issue.13, pp.2987-3000, 2009.
DOI : 10.1038/ni1128

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806453

A. Sambandam, I. Maillard, V. Zediak, L. Xu, R. Gerstein et al., Notch signaling controls the generation and differentiation of early T lineage progenitors, Nature Immunology, vol.165, issue.7, pp.663-70, 2005.
DOI : 10.1084/jem.163.1.1

F. Radtke, I. Ferrero, A. Wilson, R. Lees, M. Aguet et al., Notch1 Deficiency Dissociates the Intrathymic Development of Dendritic Cells and T Cells, The Journal of Experimental Medicine, vol.96, issue.7, pp.1085-94, 2000.
DOI : 10.1016/S1074-7613(00)80649-4

S. Orkin, GATA-binding transcription factors in hematopoietic cells, Blood. Aug, vol.180, issue.3, pp.575-81, 1992.

I. Ho, T. Tai, and S. Pai, GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation, Nature Reviews Immunology, vol.7, issue.2, pp.125-160, 2009.
DOI : 10.1038/nri2476

P. Pandolfi, M. Roth, A. Karis, M. Leonard, E. Dzierzak et al., Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis, Nature Genetics, vol.19, issue.1, pp.40-44, 1995.
DOI : 10.1038/336348a0

R. Hendriks, M. Nawijn, J. Engel, H. Van-doorninck, F. Grosveld et al., Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus, European Journal of Immunology, vol.16, issue.6, pp.1912-1920, 1999.
DOI : 10.1002/(SICI)1521-4141(199906)29:06<1912::AID-IMMU1912>3.0.CO;2-D

C. Ting, M. Olson, K. Barton, and J. Leiden, Transcription factor GATA-3 is required for development of the T-cell lineage, Nature, vol.384, issue.6608, pp.474-482, 1996.
DOI : 10.1038/384474a0

S. Pai, M. Truitt, C. Ting, J. Leiden, L. Glimcher et al., Critical Roles for Transcription Factor GATA-3 in Thymocyte Development, Immunity, vol.19, issue.6, pp.863-75, 2003.
DOI : 10.1016/S1074-7613(03)00328-5

URL : http://doi.org/10.1016/s1074-7613(03)00328-5

W. Zheng and R. Flavell, The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells, Cell, vol.89, issue.4, pp.587-96, 1997.
DOI : 10.1016/S0092-8674(00)80240-8

J. Zhu, M. B. Hu-li, J. Watson, C. Grinberg, A. Wang et al., Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses, Nature Immunology, vol.130, issue.11, pp.1157-65, 2004.
DOI : 10.1016/S1074-7613(01)00084-X

T. Taghon, M. Yui, and E. Rothenberg, Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3, Nature Immunology, vol.19, issue.8, pp.845-55, 2007.
DOI : 10.1038/ni1486

S. Samson, O. Richard, M. Tavian, T. Ranson, C. Vosshenrich et al., GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors, J Immunol, vol.19173, issue.96, pp.701-113935, 2003.
DOI : 10.1016/s1074-7613(03)00294-2

URL : http://doi.org/10.1016/s1074-7613(03)00294-2

D. Leukemia, G. Smet, D. Smedt, M. Vandekerckhove, B. Leclercq et al., An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCRgammadelta T cells, Blood, vol.20113, issue.1113, pp.1967-772988, 2006.

T. Feyerabend, G. Terszowski, A. Tietz, C. Blum, H. Luche et al., Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway, J Immunol, vol.30179, issue.11, pp.421-459, 2007.

J. Leiden, Transcriptional Regulation of T Cell Receptor Genes, Annual Review of Immunology, vol.11, issue.1, pp.539-70, 1993.
DOI : 10.1146/annurev.iy.11.040193.002543

A. Henderson, S. Mcdougall, J. Leiden, and K. Calame, GATA elements are necessary for the activity and tissue specificity of the T-cell receptor beta-chain transcriptional enhancer., Molecular and Cellular Biology, vol.14, issue.6, pp.4286-94, 1994.
DOI : 10.1128/MCB.14.6.4286

I. Ho, P. Vorhees, N. Marin, B. Oakley, S. Tsai et al., Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene, EMBO J, 1991.

I. Engel and C. Murre, THE FUNCTION OF E- AND ID PROTEINS IN LYMPHOCYTE DEVELOPMENT, Nature Reviews Immunology, vol.94, issue.3
DOI : 10.1084/jem.192.12.1775

M. Heemskerk, B. Blom, G. Nolan, A. Stegmann, A. Bakker et al., Inhibition of T Cell and Promotion of Natural Killer Cell Development by the Dominant Negative Helix Loop Helix Factor Id3, Journal of Experimental Medicine, vol.17, issue.8, pp.1597-602, 1997.
DOI : 10.1016/S0952-7915(96)80056-2

G. Bain, E. Maandag, D. Izon, D. Amsen, A. Kruisbeek et al., E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements, Cell, vol.79, issue.5, pp.885-92, 1994.
DOI : 10.1016/0092-8674(94)90077-9

Y. Yokota, A. Mansouri, S. Mori, S. Sugawara, S. Adachi et al., Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2, Nature. Feb, vol.25397, issue.6721, pp.702-708, 1999.

S. Fujimoto, T. Ikawa, T. Kina, Y. Yokota, M. Boos et al., Forced expression of Id2 in fetal thymic T cell progenitors allows some of their progeny to adopt NK cell fate Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity, Int Immunol. J Exp Med, vol.19204, issue.1085, pp.1175-821119, 2007.

I. Cowell, E4BP4/NFIL3, a PAR-related bZIP factor with many roles, BioEssays, vol.242, issue.11, 2002.
DOI : 10.1002/bies.10176

D. Gascoyne, E. Long, H. Veiga-fernandes, J. De-boer, O. Williams et al., The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development, Nat Immunol, 2009.

S. Kamizono, G. Duncan, M. Seidel, A. Morimoto, K. Hamada et al., E4bp4 is required for the development and maturation of NK cells in vivo IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching, J Exp Med Proc Natl Acad Sci, vol.206107, issue.1132, pp.2977-86821, 2009.

P. Liu, J. Keller, M. Ortiz, L. Tessarollo, R. Rachel et al., Bcl11a is essential for normal lymphoid development, Nature Immunology, vol.4, issue.6, pp.525-557, 2003.
DOI : 10.1038/ni925

Y. Wakabayashi, H. Watanabe, J. Inoue, N. Takeda, J. Sakata et al., Bcl11b is required for differentiation and survival of ???? T lymphocytes, Nature Immunology, vol.4, issue.6, pp.533-542, 2003.
DOI : 10.1038/ni927

J. Inoue, T. Kanefuji, K. Okazuka, H. Watanabe, Y. Mishima et al., Expression of TCR???? Partly Rescues Developmental Arrest and Apoptosis of ???? T cells in Bcl11b-/- Mice, The Journal of Immunology, vol.176, issue.10, pp.5871-5880, 2006.
DOI : 10.4049/jimmunol.176.10.5871

T. Ikawa, S. Hirose, K. Masuda, K. Kakugawa, R. Satoh et al., An Essential Developmental Checkpoint for Production of the T Cell Lineage, Science, vol.459, issue.7248, pp.93-99, 2010.
DOI : 10.1038/nature08068

L. Li, M. Leid, E. Rothenberg, T. Fang, Y. Yashiro-ohtani et al., An Early T Cell Lineage Commitment Checkpoint Dependent on the Transcription Factor Bcl11b. Science Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity, pp.89-93100, 2007.

C. Franco, D. Scripture-adams, I. Proekt, T. Taghon, A. Weiss et al., Notch/Delta signaling constrains reengineering of pro-T cells by PU.1, Proceedings of the National Academy of Sciences, vol.19, issue.8, pp.11993-12001, 2006.
DOI : 10.1101/gad.1298305

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567686

C. Laiosa, M. Stadtfeld, H. Xie, L. De-andres-aguayo, and T. Graf, Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors, Immunity, 2006.

H. Han, K. Tanigaki, N. Yamamoto, K. Kuroda, M. Yoshimoto et al., Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision, International Immunology, vol.14, issue.6, pp.637-682, 2002.
DOI : 10.1093/intimm/dxf030

K. Tanigaki, M. Tsuji, N. Yamamoto, H. Han, J. Tsukada et al., Regulation of ????/???? T Cell Lineage Commitment and Peripheral T Cell Responses by Notch/RBP-J Signaling, Immunity, vol.20, issue.5, pp.611-633, 2004.
DOI : 10.1016/S1074-7613(04)00109-8

T. Taghon, E. David, J. Zuniga-pflucker, and E. Rothenberg, Delayed, asynchronous, and reversible Tlineage specification induced by Notch/Delta signaling, Genes Dev Apr, vol.1519, issue.8, pp.965-78, 2005.
DOI : 10.1101/gad.1298305

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080135

S. Ohno, T. Sato, K. Kohu, K. Takeda, K. Okumura et al., Runx proteins are involved in regulation of CD122, Ly49 family and IFN-gamma expression during NK cell differentiation, Int Immunol, 2008.

Y. Yu, Y. Chiang, and J. Yen, GATA Factors Are Essential for Transcription of the Survival Gene E4bp4 and the Viability Response of Interleukin-3 in Ba/F3 Hematopoietic Cells, Journal of Biological Chemistry, vol.277, issue.30, pp.27144-53, 2002.
DOI : 10.1074/jbc.M200924200