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*ABSTRACT 

Motivations: De novo sequencing of genomes is followed by anno-

tation analyses aiming at identifying functional genomic features 

such as genes, non-coding RNAs or regulatory sequences, taking 

advantage of diverse datasets. These steps sometimes fail at de-

tecting non-coding functional sequences: for example, origins of 

replication, centromeres and rDNA positions have proven difficult to 

annotate with high confidence. Here, we demonstrate an unconven-

tional application of Chromosome Conformation Capture (3C) tech-

nique, which typically aims at deciphering the average three-

dimensional organization of genomes, by showing how functional 

information about the sequence can be extracted solely from the 

chromosome contact map. 

Results: Specifically, we describe a combined experimental and 

bioinformatic procedure that determines the genomic positions of 

centromeres and ribosomal DNA clusters in yeasts, including spe-

cies where classical computational approaches fail. For instance, we 

determined the centromere positions in Naumovozyma castellii, 

where these coordinates could not be obtained previously. Although 

computed centromere positions were characterized by conserved 

synteny with neighboring species, no consensus sequences could 

be found, suggesting that centromeric binding proteins or mecha-

nisms have significantly diverged. We also used our approach to 

refine centromere positions in Kuraishia capsulata, and to identify 

rDNA positions in Debaryomyces hansenii. Our study demonstrates 

how 3C data can be used to complete the functional annotation of 

eukaryotic genomes.  

  
*To whom correspondence should be addressed.  

Availability and Implementation: The source code is provided in 

the supplementary material. This includes a zipped file with the 

Python code and a contact matrix of S. cerevisiae.  

1 INTRODUCTION  
De novo sequencing of genomes is typically followed by anal-

yses aiming to identifying functional genomic features such as 

genes, non-coding RNAs or regulatory sequences. This important 

so-called annotation step raises non-trivial questions, and led to the 

development of complex bioinformatics approaches taking ad-

vantage of multiple datasets. For instance, transcriptome analysis is 

conveniently used to annotate expressed coding sequences (Grab-

herr et al., 2011; Saha et al., 2002) and synteny conservation be-

tween related species can reveal or confirm the presence of regula-

tory elements (Gordon et al., 2011; Kellis et al., 2004). Comple-

mentary to automated annotation through comparative approaches, 

experimental approaches such as ChIP-seq or MNase-seq have 

been conveniently used to map epigenetic marks, replication ori-

gins, or other functional elements of the genome (Roy et al., 2010; 

Wang et al., 2012).  

However, such tools are sometimes unable to detect non-coding 

functional sequences: for example, origins of replication, centro-

meres and rDNA positions have sometimes proven difficult to 

annotate with a high degree of confidence in genomes. A compel-

ling example is the failure of comparative genomics to identify the 

centromeres of the hemiascomycetes species Naumovozyma cas-

tellii through comparative genomics (Gordon et al., 2011). As 

another example, the number of rDNA clusters in the genome of 

Debaryomyces hansenii is not known precisely, but only estimated 
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to lie between one and three and not currently annotated in the 

genomic sequence (Dujon et al., 2004; Jacques et al., 2010).  

Genomic chromosome conformation capture (3C) assays meas-

ure the physical contact frequencies between DNA sequences 

(Dekker et al., 2002; Lieberman-Aiden, Berkum, et al., 2009; 

Duan et al., 2010), providing important insights into both genomic 

organization and topological changes of chromatin domains that 

accompany cell differentiation or development. 3C data are typi-

cally analyzed in light of epigenetic marks and other genomic 

annotations. In an alternative application, 3D contact can be inter-

preted as an indicator of co-linearity of two DNA segments, and 

were recently used to improve the scaffolding of the human ge-

nome (Kaplan and Dekker, 2013; Burton et al., 2013). Here, we 

use genome-wide 3C data to unveil functional elements of eukary-

otic genomes that escape comparative genomic analysis. Specifi-

cally, we take advantage of nuclear architecture features to precise-

ly determine the positions of centromeres in the yeast species N. 

castellii (Cliften et al., 2006). We show that this bioinformatic 

approach discriminates ambiguous results from bioinformatics 

analysis, such as in K. capsulata. Finally, it also allowed us to 

complete the annotation of rDNA in the D. hansenii genome and 

confirm its centromere annotation (Lynch et al., 2010). 

2 METHODS 
Centromeres and rDNA clusters lead to characteristic architectural fea-

tures in the yeast nucleus. Taking advantage of these features, we devel-

oped a robust approach to characterize computationally centromere and 

rDNA positions from 3C data.  

Yeast centromeres are tethered near a pole of the nucleus via microtubules 

attached to the microtubule organizing center (MTOC, or Spindle Pole 

Body in yeast), leading to centromere clustering. In the budding yeast 

Saccharomyces cerevisiae, this clustering causes distinct peaks of inter-

chromosomal contact frequencies in the raw genome-wide contact matrix, 

reflecting the convergence of 32 chromosomal arms towards a discrete 

region of the nucleus   (Duan et al., 2010). 

 

Fig.1. Experimental and computational workflow. 

We developed an algorithm that automatically recognizes these specific 

contact enrichments and estimates the genomic coordinates of centromeres. 

Centromeric positions are therefore determined based on their core biologi-

cal function, rather than by sequence motif recognition, as is usually done. 

This approach can discriminate between multiple candidate positions 

obtained by sequence analysis.  

Ribosomal DNA is organized as a cluster of repeats in the genome of all 

eukaryotes sequenced so far. These rDNA repeats give rise to the nucleolar 

compartment(s), which in S. cerevisiae, and other species, consists in a 

single subnuclear volume located opposite the SPB. This organization, 

combined with the large size of the rDNA cluster, creates an apparent intra-

chromosomal barrier within the contact matrix of the chromosome carrying 

the rDNA locus. The position of a rDNA cluster in a genome is therefore 

easily identifiable, even in the absence of any annotation or sequence in the 

reference sequence. We developed an algorithm to identify the presence of 

rDNA clusters in these genomes. 

The flowchart in Figure 1 provides an overview of the experimental and 

computational workflow, each of which will be described in a distinct 

subsection below.  

2.1  Generation of genome-wide chromosome contact 

frequency matrices 

3C libraries of the yeast species S. cerevisiae (BY4741), N. castellii 

(CBS4309), D. hansenii (CBS767), and K. capsulata (CBS1993) were 

generated from log-phase cells growing in YPD medium and as previously 

described (Dekker et al., 2002; Oza et al., 2009), but using a frequently 

cutter enzyme (DpnII) as in (Sexton et al., 2012). Briefly, the cells were 

cross-linked with 1% formaldehyde, and resuspended in DpnII restriction 

buffer, which were subsequently processed into Illumina libraries. 3C 

libraries were sheared and resulting fragments with sizes between 400 and 

800 bp were sequenced using 100 bp pair-end sequencing on an Illumina 

HiSeq2000. The raw data from all 3C-seq experiments was then processed 

as follow: first, short reads were mapped on the genomes of S. cerevisiae 

(GCF_000146045.1), N. castellii (GCF_000237345.1), D. hansenii 

(GCF_000006445.1), and K. capsulata (Morales et al., in revision) using 

bowtie 2 in local and very sensitive modes (Langmead and Salzberg, 

2012). Only pairs of reads with a Mapping Quality above 30 were retained, 

and contact reads mapping on the same fragment were discarded (Cournac 

et al., 2012). PCR duplicates were also removed. All rejected reads (except 

PCR duplicates) were included in a pool of “leftover reads”. These filtering 

steps generally remove 15 to 20% of the initial set of raw reads. After 

alignment of individual reads on the reference genome, we built a 2D 

histogram, where the value of each 2D bin (pixel) indicates how many 

reads fall into the corresponding pair of genomic segments. The genomic 

partition defining these segments was based on the restriction enzyme 

cutting sites, rather than on constant genomic intervals. For the S. cere-

visiae, the DpnII restriction enzyme leads to a contact matrix M0 of size 

m0 x m0, with m0 = 35914.  At this resolution, however, the contact matrix is 

very sparse, and hence noisy. The signal-to-noise ratio can be improved at 

the expense of genomic resolution by binning the reads into larger genomic 

intervals. We therefore considered three additional matrices, Mk (k =1,2,3) 

obtained by summing non-overlapping blocks of 3k x 3k pixels. For S. 

cerevisiae, these matrices have genomic bins of R1 = 1,233 ± 1,095bp 

(mean ± standard deviation of 3 restriction fragment [RF]), 

R2 = 3,696 ± 1,919bp (9 RF) and R3 = 11,034 ± 3,455bp (27 RF), and size 

m1  = 9,712, m2  = 3,240 and m3  = 1,086, respectively (Figure 2A-C, respec-

tively). 
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For small genomic bin sizes R, the limited signal-to-noise ratio of these 

matrices can complicate the identification of contact frequency enrich-

ments. Computing a correlation matrix, as initially done in (Lieberman-

Aiden, van Berkum, et al., 2009), allows to strongly increase the contrast of 

contact patterns. We then computed a new matrix C from M, where C(i,j) is 

defined as the Pearson correlation coefficient of the rows i and j of M: 

 

 

                                                                                                           (1) 

 

 

And 

 

 

is the average value of row i of matrix M. Note that in order to remove the 

chromosome length bias, the correlation was computed from the interchro-

mosomal parts of the matrix (Figure 2D). 

 

 
Fig. 2. Contact frequency matrices M1, M2 and M3, for S. cerevisiae, at 

three levels of genomic resolution: (A) R1 = 1,233 bp (3RF), (B) R2 = 3,696 

bp (9 RF), (C) R3 = 11,034 bp (27 RF). The 16 chromosomes of S. cere-

visiae are labeled from I to XVI. The strong diagonal is due to intrachro-

mosomal contacts. Note the peaks corresponding to contacts between 

centromeres from different chromosomes. (D) Correlation matrix for S. 

cerevisiae: each element of the matrix is the Pearson coefficient between 

the vectors i and j of the matrix of contacts (bin size of 3,696 kb). (E) 

Zoom on the intra-chromosomal correlation map of chromosome 4. The 

centromere score S(l) for each bin l is plotted along the sub-matrix (scale 

bar = 100kb). The peak of this distribution defines the center of a 40kb 

window w likely to contain the centromere. 

2.2  Rough pre-localization of centromeric regions 

from cis contacts 

In the correlation matrix C, the blocks corresponding to intrachromoso-

mal (cis) contacts within pericentromeric regions exhibit a characteristic 

“cross” shape pattern (see diagonal in Figure 2D and 2E). This pattern can 

be explained by the clustering of centromeres near the spindle pole body 

(SPB) and the polymer brush-like organization of chromosomes in this 

region, whereby the two chromosome arms are stretched out away from the 

SPB (Wong et al., 2012). As a result, the centromere is sequestered away 

from other loci along the chromosome, leading to a depletion of contacts 

along the yellow dotted lines in Figure 2E, while loci on opposite arms 

located at similar genomic distances from the centromeres tend to be in 

proximity, leading to contact enrichments along the "anti-diagonal" (pink 

dotted line in Figure 2E). We took advantage of this pattern for the auto-

mated identification of centromeres by defining a "centromere score" as: 
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where p is the number of rows of the submatrix and E(x) denotes the largest 

integer ≤ 𝑥. Thus, for each genomic bin l, S(l) is the ratio of the average 

correlation along the anti-diagonal passing through C(l,l) and the average 

correlation along the row l of C. The 'centromere score' S(l) is expected to 

be largest for l near the actual position of the centromere (Figure 2E). Note 

that for acrocentric chromosomes, the peak of S can differ significantly 

from the true centromere position. Therefore, for each chromosome k, we 

used the location of this maximum, 𝑙0 = argmax𝑆(𝑙) to define a genomic 

interval 

                                                                                                 (4) 

along the chromosome that we expect to contain the centromere. The size 

of the interval is arbitrary and depends on the size of the chromosome: it 

must be kept within the chromosome boundaries, and must be large enough 

that the Gaussian fit can be applied correctly (see below). For S. cerevisiae 

we used window sizes of 40kb. A more accurate localization of the centro-

mere is performed in the next step, as described below.  

2.3  Refined estimation of centromere position from 

trans contacts 

In principle, the position of a given centromere could be obtained using 

only the cis contact submatrix for the corresponding chromosome, or 

alternatively using only the trans contact submatrix involving one other 

chromosome. However, since contact matrices are histograms obtained 
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from a limited number of reads, they are subject to Poisson noise, which 

imposes a fundamental limit to the localization accuracy (much as in single 

molecule localization, see e.g. 18). For improved localization accuracy, we 

therefore took advantage of the redundancy provided by the Nchr -1 distinct 

trans contact patterns available for each of the Nchr centromeres (Nchr = 16 

for S cerevisiae). This approach was applied both on the raw contact matrix 

M and on the normalized matrix N, obtained as described in (Cournac et al., 

2012). Briefly, this normalization step aims to correct for experimental 

biases affecting the transformation from ligation product counts into con-

tact frequencies (a different approach as the procedure described in (Yaffe 

and Tanay, 2011). The procedure employs an iterative algorithm that 

enforces all rows and columns to have unit sum, i.e. it ensures that 

∑ 𝑁(𝑖, 𝑗) = 1𝑚
𝑖=1  for all 𝑗 = 1. .𝑚 and  ∑ 𝑁(𝑖, 𝑗) = 1𝑚

𝑗=1  for all 𝑖 = 1. .𝑚, 

where m is the size of the matrix. For details, see (Cournac et al., 2012), or 

(Imakaev et al., 2012) for a related approach. The normalization has the 

overall effect to increase the contrast of the contact data, and to attenuate 

noise in the raw data (Figure 3A). 

Fig. 3. (A) Normalized contact frequency matrix N1 for S cerevisae. (B) 

Summed trans-contact matrices corresponding to the submatrix of size w 

(Figure 2E) for chromosome 2. On the right side of each sub-matrix we plot 

the distribution of the centromere localizations obtained using bootstrap-

ping. The true centromere position is indicated with a red line. The diagram 

below represents the distribution of the 16 centromere positions as estimat-

ed from raw and normalized data (blue and red circles, respectively). x-

axis: distances along the chromosome, centered on the position of the 

centromere (scale bar = 1kb). 

Specifically, for each chromosome, we carved out Nchr -1 submatrices of 

size 40 kb x 40 kb corresponding to trans contacts and defined by the 

                                             intervals obtained above (if necessary, the size 

of this matrix was reduced to that of the smallest interval, such that all 

submatrices had the same size). Note that in computing the superposed 

matrix we did not use the intrachromosomal contact data because of the 

bias for acrocentric chromosomes mentioned above. These submatrices 

were then summed, yielding a single "superposed" contact matrix Ak (for 

the centromere of chromosome k; Figure 3B): 

 

             (5) 

 

 

For normalized data, M is simply replaced by N (Figure 3B). The next 

step consists in projecting this summed contact matrix into a 1D profile         

𝐹𝑘(𝑖) = ∑ 𝐴(𝑖, 𝑗)
𝑝
𝑗=1  

As apparent from Figure 3B, normalization typically produces a less noisy 

profile, allowing more accurate identification of the centromere-related 

peak. Finally, in order to accurately estimate the centromere position, we 

implemented a Gaussian fitting procedure similar to that commonly used 

for single molecule localization (Ober et al., 2004). Specifically, we used 

an iterative algorithm that aims to minimize the mean squared difference: 

𝐻(𝑎, 𝑏, 𝑖𝑐, 𝜎) = ∑ [𝐹𝑘(𝑖) − 𝐺(𝑖; 𝑎, 𝑏, 𝑖𝑐, 𝜎)]𝑖

2
     (6) 

between F and the Gaussian function:  

𝐺(𝑖; 𝑎, 𝑏, 𝑖𝑐 , 𝜎) = 𝑎 exp(−
(𝑖−𝑖𝑐)

2

2𝜎2
) + 𝑏      (7) 

where a, b, ic and σ are the parameters to be fitted, i.e. we seek:  

(𝑎̂, 𝑏̂, 𝑖̂𝑐, 𝜎̂) = argmin𝐻 (𝑎, 𝑏, 𝑖𝑐, 𝜎)     (8) 

Thus the final estimated position of the centromere for chromosome k is 

given by 𝑖̂c.. 

Application of this procedure to our normalized S. cerevisiae contact data 

and comparison with the genomic annotation revealed that the centromeres 

could be localized with a mean absolute error of only 627 bp (1232 bp 

without normalization) - demonstrating that this functionally important 

locus can be accurately located from the contact data alone (Figure 3B).  

2.4  Confidence intervals and effect of coverage and 

normalization on localization accuracy 

In order to provide a robust roadmap for future studies, we next quanti-

fied centromere localization accuracy and how it is affected by coverage 

(i.e. sequencing depth), binning, and the normalization procedure.  

We used a bootstrapping approach to estimate confidence intervals of the 

computed centromere localization and to examine the influence of cover-

age. Specifically, we simulated many contact frequency matrices with an 

expected total number of reads either equal to, or smaller than the experi-

mentally obtained matrix M (which for S. cerevisiae totals 

Nreads,Sc = 21,457,086). To do this, we generated Nbs = 500  contact matrices 

Mbs,k, k = 1..Nbs  where Mbs,k(i,j) is a random integer value drawn from a 

Poisson distribution of density 𝜆(𝑖, 𝑗) = 𝑓𝑀(𝑖, 𝑗), where 𝑓 ≤ 1 indicates 

the coverage relative to the original matrix. Thus the expected total number 

of contacts in Mbs,k is 𝑓𝑁𝑟𝑒𝑎𝑑𝑠. We then used each of the random contact 

matrices Mbs,k, to compute an independent estimate of the centromere 

positions.  

Centromere position confidence interval. For f = 1, the distribution of 

these estimates provides a measure of the uncertainty with which the 

centromere positions have been determined from the original contact data. 

We compared the distribution of localization errors for the 16 centromeres 

of S. cerevisiae to the normal distribution of mean 0 and variance given by 

the bootstrap samples. The two distributions cannot be distinguished by a 

Kolmogorov-Smirnov test (p=0.12; Figure 4A). This suggests that the 

confidence intervals determined by the bootstrap estimates correctly reflect 

actual localization uncertainties. 

Effect of coverage, normalization and binning. To examine the effect of 

coverage (or sequencing depth), which determines the total number of 

reads involved in contacts in the matrix, we applied the bootstrapping 

method to a range of f smaller than 1 (i.e. to experimental matrices where 

contact events have been down-sampled), specifically: f = 0.8, 0.6, 0.4, 0.2, 

0.1, 0.01, 0.001. For each value of f, we computed the centromere position 

error from the Nbs samples (relative to the ground truth) and the mean over 

the 16 centromeres and the Nbs samples. Figure 4B plots this mean error as 

function of the mean number of reads in the bootstrapped samples 

(𝑓𝑁𝑟𝑒𝑎𝑑𝑠). As expected, the localization accuracy generally improves with 

coverage, provided that the contact data are binned at adequate genomic 

resolution and that the qualities of the libraries are equivalent. Also, nor-

malization improves localization accuracy for high coverage (𝑁𝑟𝑒𝑎𝑑𝑠 >

2.106), but gives much poorer results for low coverage, where the raw data 
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should be preferred and provide more consistent accuracy. This result 

underlines the complexity of 3C contact data analyses and the need to take 

into account sequencing depth, binning, and bias correction. However, it 

also shows that a ~1M reads contact map is sufficient to identify with high 

accuracy centromeric positions. The graph provides a tool to determine the 

likely optimal choice of binning and normalization options for the DpnII 

enzyme applied to a yeast genome. Using bins smaller than ~3kb does not 

significantly affect localization accuracy of normalized data (Figure 4B).  

Fig.4. (A) The distribution of localization errors for the 16 S. cerevisiae 

chromosomes normalized by the standard deviation of corresponding 

bootstrap estimates (cumulative distribution, solid curve) is consistent with 

a normal distribution (dotted curve). (B) Effect of coverage, normalization 

and binning on localization accuracy. The mean absolute localization error 

for the 16 S. cerevisiae centromeres is plotted as function of the number of 

reads for normalized (solid curves) and raw contact data (dashed curves) 

and for three resolutions (bin size median indicated in legend).  

2.5  Identification of rDNA loci in chromosome con-

tact matrices 

We next proceed to show that contact matrixes can also allow the charac-

terization of ribosomal gene clusters. First, a contact matrix of S. cerevisiae 

was generated where the bins containing the two rDNA repeats of the 

reference genome were removed (chromosome 12 region comprised be-

tween 450,000 and 470,000 of the reference genome was removed, encom-

passing the two rDNA units positioned between coordinates 451575 and 

468931 and reflecting the 100 – 200 repeats of total rDNA). The pair-end 

reads were remapped on this modified genome (including the mitochondri-

al DNA; bin size = 10kb). We then selected in the pool of “leftover reads” 

all the pairs where one mate maps unambiguously on the genome (mapping 

quality above 30), while the other mate does not eliminating reads contain-

ing unknown bases (N). These unmapped sequences were blasted on a 

sequence dataset containing yeast ribosomal sequences retrieved from the 

NCBI server (parameters: blast2 -p blastn -e 2e-30) to keep only highly 

significant hits. The corresponding mates were then mapped along the 

genome divided into bins (Figure 5). The peak in the distribution was 

clearly apparent on chromosome 12 (~10,000 hits compare to an average of 

20 along the rest of the genome). Zooming in the distribution along an 

unmodified genome (bin size = 10bp) clearly show that the peaks lie within 

chromosome 12 region comprised between 450,000 – 490,000 bp, adjacent 

to the position of the ribosomal gene cluster (Figure 5B; note the 5S vari-

ants lying between 470,000 and 490,000 positions of the cluster per se do 

not allow high quality mapping of the reads and appear also as a blank area 

along the genome).   

Fig. 5. Characterization of rDNA position in S. cerevisiae from contact 

matrix. (A) Distribution of the reads whose one mate maps unambiguously 

along the genome and the other maps in a rDNA sequence. The scale bar of 

the y-axis is different for chromosome 12 to adjust to the increase in con-

tacts observed in the region around ~450kb. (B) Distribution of interactions 

a rDNA sequence and another sequence in the region of chromosome 12 

around position 450,000 kb (bin size: 10bp). The genome used for the 

distribution encompasses the rDNA repeat cluster position (grey squares).   

3 RESULTS 

3.1  Discriminating true centromeres among computa-

tional predictions in Kuraishia capsulata 

Centromeres of yeast species have mainly been characterized so 

far through computational analysis approaches aiming at identify-

ing landmarks in the sequence likely to predict centromeres posi-

tions with high confidence level. A classical approach consists in 

searching for the consensus sequences specific to most Saccharo-

mycetaceae species studied so far, and related to the point centro-

meres of the well-studied yeast Saccharomyces cerevisiae (Souciet 

et al., 2009; Gordon et al., 2011). These centromeres are very 

compact (125bp) and present a consensus sequence composed of 

three centromere DNA elements (CDEI, II, III; 20). CDE I and III 

present a strong consensus core region and flank CDEII which is 

characterized by a strong AT rich content but a high sequence 

variability (>90%). Not all yeast species exhibit such distinguisha-

ble point centromeres, and an alternative analysis searching for 

local composition-bias in low-GC content was recently described 

(Lynch et al., 2010). Drop in GC content is likely to reflect a drop 

in recombination frequency, and coincide with the positions of 

centromeres experimentally characterized in Yarrowia lypolitica 

(Lynch et al., 2010), as well as putative centromeric regions made 

of clusters of retrotransposon Tdh5 in Debaryomyces hansenii, for 

instance.  

The genome of the nitrate assimilating yeast K. capsulata has 

been recently sequenced and assembled into seven chromosomes 

(Morales et al., in press). A search for CDEI and III consensus 
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sequences failed to identify putative centromeres. However, a 

search for low-GC content regions as described in (Louis et al., 

2012; Lynch et al., 2010) led to the characterization of nine puta-

tive centromeric regions (with chromosome four containing three; 

Morales et al., in press; Table 1). In order to confer an experi-

mental validation of these results, and see if we could discriminate 

between ambiguous sequences, we performed a genomic 3C exper-

iment on K. capsulata and sequenced the resulting library. The 

quality of the matrix was relatively poor despite an important 

coverage (Nreads,Kc  = 16,446,227; Figure 6A), as seen by the “flat-

ness”, or lack of contrasts, of the matrix and as quantified by the 

ratio between mitochondrial and genomic DNA interactions (AC 

and RK, personal communication). Despite the apparent noise, 

each chromosome still exhibits a discrete region presenting a 

strong enrichment in interactions with the corresponding other 

chromosomal regions, similar to centromeric behavior in S. cere-

visiae (pink arrowheads, Figure 6B). We followed the procedure 

described above and characterized for each of the seven chromo-

somes cis-contact matrixes the genomic intervals w containing 

centromeric regions. Given the low coverage in informative reads 

of the matrix, we opted for a binning of 2,191kb (9 RF) and as-

sessed from the analysis above that little if any improvement 

would result from SCN normalization. We proceeded to superpose 

the trans-submatrices containing the centromeric regions defined 

from the cis-contacts (Figure 6B). A Gaussian fit was applied as 

described, and the coordinates of centromere positions along with 

the precision calculated (Figure 6B; Table 1). Quite remarkably, 

the regions identified experimentally through this approach over-

lapped exactly with those obtained after computational analysis for 

the six chromosomes exhibiting a single, unambiguous putative 

centromere position (Table 1). In addition, the region identified on 

chromosome four as the centromere overlapped with only one of 

the three putative positions identified from the composition bias 

analysis, allowing the annotation of this position as the true cen-

tromere. This analysis indicates that careful handling of a contact 

matrix can successfully back up computational annotation, experi-

mentally confirming and disambiguating weak predictions.  

3.2  Identification of centromeres in Naumovozyma 

castellii 

We then turned to N. castellii, an organism in which centromeric 

regions remained elusive to date, despite thorough and repeated 

investigation using different computational approaches (Gordon et 

al., 2011; Cliften et al., 2006). We built a genomic 3C library of N. 

castellii CBS 4309 strain and generated the corresponding contact 

matrix (Nchr = 10; Nreads,Nc  = 3,265,947 contacts; Figure 6C). Fol-

lowing through the procedure described above, we characterized 

for each of the ten chromosomes cis-contact matrixes the genomic 

intervals containing centromeric regions (Figure 6D). From the S. 

cerevisiae analysis, we estimated that the optimal binning for a 3M 

reads raw contact matrix to 3,696 kb bins (9 RF) and that normali-

zation through SCN was likely to improve the results (Figure 4B). 

Therefore, we generated this matrix and proceeded to superpose 

the trans-submatrices containing the centromeric regions defined 

from the cis-contacts. The Gaussian fit was applied as described, 

and the coordinates of centromere positions along with the preci-

sion calculated (Table 1).  

Fig. 6. Identification of genomic features in three different species. (A) 

Correlation matrix of K. capsulata (seven chromosomes). The pink arrow-

heads indicate some of the punctual inter-chromosomal contacts observable 

in the matrix. (B) Left: zoom on cumulated inter-chromosomal contacts of 

chromosome four around the region w likely to contain the centromere. 

Right: distribution of the sum of interchromosomal contacts along chromo-

some four (in blue). The red line indicates the peak of the distribution and 

the region containing the centromere (scale bar = 10kb). (C) Correlation 

matrix of N. castellii (10 chromosomes). (D) Zoom on intra-chromosomal 

contacts of chromosome 3. The peak of this distribution defines the center 

of a 20kb window w likely to contain the centromere (scale bar = 100kb). 

(E) Identification of CDEI and CDEIII consensus sequences in a mix of 

intergenic regions from Lachancea centromeric regions and N. castellii 

centromere sequences predicted from the 3C data. The signal identified 

corresponds only to Lachancea sequences.  (F) Schematic representation of 

synteny conservation between a centromeric region of N. castellii (bottom 

line) and S. cerevisiae (three upper blocks). Grey circles: genes between 

syntenic blocks (in black rectangles). Full colored circles: conserved genes. 

Black diamonds: known centromere. Empty diamond: predicted centro-

mere. (G) Correlation matrix of D. hansenii (seven chromosomes). The 

centromere position can be assessed from the matrix by the “break” it 

generates in the matrix. (H) Distribution along the genome of reads with 

one pair mate maps with a good quality score and the other does not but 

correspond to ribosomal DNA. The peak observed on chromosome seven 

marks the position of the rDNA cluster.  

N. castellii, although positioned within a clade of species that 

present the CDE consensus sequences characteristic of point cen-

tromeres, is an intriguing exception in this regards. We hypothe-
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sized that CDE sequences may have escaped from former investi-

gations because of important divergence of the consensus se-

quence, and performed a computational analysis focusing on the 

centromeric region identified through genomic 3C. First, the inter-

genic sequences of the coding DNA sequences (CDS) found within 

these coordinates were recovered and submitted to the motif finder 

algorithm MEME (Bailey and Elkan, 1994) under the zoops (zero 

or one motif per sequence) or the oops (only one motif per se-

quence) modes. No significant motif could be identified from these 

first analyses. In order to guide the motif finder program, intergen-

ic sequences from N. castellii were included into a set of 63 inter-

genic regions known to contain centromeres from 8 other yeast 

species from the Lachancea clade. These regions were used as a 

validation of the CDE I and III detection approach. MEME was 

then able to identify CDEI and CDEIII consensus sequences (Fig-

ure 6E) but all of these motifs corresponded to centromere regions 

of Lachancea species, whereas no CDEI and only a very weak 

CDEIII signal was observed for N. castellii regions (and no signa-

ture of a CDEII region was found upstream of CDEIII).  

 

For an independent verification, and to test whether the centro-

meric regions of N. castellii have retained their ancestral positions, 

we analyzed the synteny conservation of pericentromeric regions 

between N. castelii and two related species, S. cerevisiae and 

Zygosaccharomyces rouxii. To do so, we defined synteny blocks 

between pericentromeric regions, encompassing 10 protein-coding 

genes in the two related species and the genome of N. castellii. We 

then looked if the coordinates of the conserved synteny blocks in 

the genome of N. castellii overlapped the coordinates of the cen-

tromeric regions defined from the contact map (Figure 6B; Drillon 

et al., 2014). Four out of 10 centromeres in N. castellii belonged to 

the first category. Of the remaining six, two additional centromeric 

regions in N. castellii were found to lie right next to a synteny 

breakpoint with the genome of either S. cerevisiae or Z. rouxii, and 

therefore were also compatible with ancestral centromeric loca-

tions. For the four remaining centromeric regions, we found that 

multiple rearrangements having occurred in these regions have 

hidden the evolutionary relatedness between these regions. In 

summary, at least six out of ten centromeric regions in N. castellii 

correspond to orthologous regions in other species that contain 

point centromeres. Therefore the majority of the centromeres in N. 

castelii have retained their ancestral positions since they diverged 

from their last common ancestor with S. cerevisiae and Z. rouxii. 

This demonstrates that if all ten consensus centromeric motifs have 

evolved beyond recognition in N. castellii, centromeres positions 

are conserved for at least 6 of them. It is likely that extending this 

approach to more closely related species with recognizable point 

centromeres will unveil more synteny links and increase this num-

ber. 

Interestingly, Gordon et al. (2009) had sought without success 

for consensus centromere sequences at putative ancestral centro-

meric locations in N. castellii. Here, we show that the centromere 

function remains nevertheless linked to these ancestral positions 

for at least six out of ten chromosomes although CDE regions are 

not identifiable within these regions. This suggests that the cen-

tromeric binding proteins and/or the mechanisms involved have 

evolved significantly in this lineage. Interestingly, and perhaps not 

coincidently, RNA interference is also conserved in this species.  

3.3  Identification of ribosomal DNA locus in Debary-

omyces hansenii 

The genome of D. hansenii, a cryotolerant and osmotolerant ma-

rine yeast important in the agro-food industry, lacks annotation of 

the ribosomal DNA locus and has centromeres predicted through 

computational analysis (Lynch et al., 2010). We generated a ge-

nomewide contact matrix of the seven chromosomes (Nreads,Dh = 

7,020,925 contacts, bins of 3.2kb corresponding to 9 RF; Figure 

6G). First, we confirmed the position of the centromeres that were 

predicted through a genomic computational approach (Table 1).  

We then search for ribosomal DNA locus (Material and Methods) 

and found a peak on chromosome G in the distribution of reads 

along the genome for which the other mate corresponds to rDNA 

(Figure 6H). By zooming in the distribution, the position of the 

ribosomal DNA cluster of D. hansenii was identified at 

1,354,000bp (Figure 6H). This region corresponds to an intergenic 

region containing a pseudogene and a gap, according to the pub-

lished reference genome (Deha2G::1,353,661-1,356,925, 

www.genolevure.org). This region was blasted on the NCBI data-

base, revealing two small (75bp) regions matching with ribosomal 

DNA at positions 1,354,446 and 1,355,863. We therefore inferred 

the position of a large, unique ribosomal DNA cluster within this 

window on chromosome G, ruling out the hypothesis regarding the 

existence of three intrachromosomal clusters in this genome.  

We then compared the chromosomal location of the rDNA be-

tween the genomes of D. hansenii and two other genomes for 

which rDNA location is known (Pichia stipitis and Yarrowia lipo-

lytica; Dujon et al., 2004; Jeffries et al., 2007) using SynChro 

(Drillon et al.). No synteny conservation could be found between 

these 3 genomes. In addition, we checked if any rDNA annotation 

could be retrieved from the genomes of 11 species belonging to the 

CTG clade at the locus corresponding to D. hansenii rDNA using 

the CGOB database (Fitzpatrick et al., 2010). No such information 

was present in the database. In conclusion, no indication of synteny 

conservation of the rDNA locus between D. hansenii and other 

yeast species could be identified, consistent with the hypothesis 

that rDNA is mobile in the Candida clade (Proux-Wera et al., 

2013). 

 

Overall, we showed that genome-wide chromosome confor-

mation capture can be used to unveil important functional elements 

that sometimes escape standard genomic analyses. After validating 

the procedure on the well-known yeast S. cerevisiae genome, we 

successfully determined centromere positions in Naumovozyma 

castellii, where these coordinates could not be obtained previously. 

Although computed centromere positions were characterized by 

conserved synteny with neighboring species, no consensus se-

quences could be found, suggesting that centromeric binding pro-

teins or mechanisms have significantly diverged. We also applied 

our approach to choosing among multiple predicted centromere 

positions in K. capsulata, and to identifying rDNA positions in D. 

hansenii. Thus, our study demonstrates how 3C data can be used to 

complete the functional annotation of eukaryotic genomes with a 

bioinformatic approach. The sequencing depth necessary to reach 

this goal does not have to be high (~3M reads proved largely suffi-

cient for N. castellii and S. cerevisiae). It is likely that our stand-

ardized procedures will allow identifying other functional elements 

from contact data matrixes in the genome of microorganisms, and 
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potentially in metazoans. Combined with the recent application of 

3C to genome assembly, this study confirms the helpfulness of tri-

dimensional information to genomic analysis. 

Table 1. Centromeres identification 

Centromeres of Kuraishia capsulata 

#chr. 
Predicted* 3C mean 

position 

Precision 

(bp) Start End 

1 466903 470996 470602 2426 

2 1546884 1551323 1547201 6741 

3 910200 913556 911375 3651 

4 

469800 472200 X  

1033064 1035337 1034424 851 

476500 478800 X  

5 574146 576900 572890 2686 

6 604123 607946 606172 3120 

7* 1101261 1106974 1099909 3548 

Centromeres of Naumovozyma castellii 

#chr. 3C mean 

position 

Precision 
Supported by synteny 

 (bp) 

1 1047129 681 YES 

2 864103 570 YES 

3 973309 489 - 

4 535959 720 YES 

5 576626 1102 - 

6 206931 527 YES 

7 591720 1055 YES 

8 293288 718 - 

9 376666 746 - 

10 183626 922 YES 

Centromeres of Debaryomyces hansennii 

#chr. 
Tdh5 cluster position 3C mean Precision 

(bp) Start End position 

A 333868 350254 346614 7134 

B 991276 1007003 1008332 1755 

C 975133 993839 979218 4402 

D 479577 494999 481966 1186 

E 504719 523489 511437 1329 

F 1543521 1560082 1548204 2039 

G 940014 967691 949618 3330 
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