A. Maier and R. M. , Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes, Cell, vol.134, issue.1, pp.20-22, 2008.
DOI : 10.1016/j.cell.2008.04.051

B. M. Cooke, Malaria and the red blood cell membrane, Seminars in Hematology, vol.41, issue.2, pp.173-188, 2004.
DOI : 10.1053/j.seminhematol.2004.01.004

J. P. Mills, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech Chem Biosyst, vol.1, pp.169-180, 2004.

H. Cranston and B. C. , Plasmodium falciparum maturation abolishes physiologic red cell deformability, Science, vol.223, issue.4634, pp.400-403, 1984.
DOI : 10.1126/science.6362007

S. Suresh, Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomaterialia, vol.1, issue.1, pp.15-30, 2005.
DOI : 10.1016/j.actbio.2004.09.001

URL : http://hdl.handle.net/11858/00-001M-0000-0010-27A1-1

A. M. Dondorp, Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology, Acta Tropica, vol.89, issue.3, pp.309-317, 2004.
DOI : 10.1016/j.actatropica.2003.10.004

G. B. Nash, Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum, Blood, vol.74, pp.855-861, 1989.

Y. Park, Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum, Proceedings of the National Academy of Sciences, vol.105, issue.37, p.13730, 2008.
DOI : 10.1073/pnas.0806100105

J. P. Mills, Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum, Proceedings of the National Academy of Sciences, vol.104, issue.22, pp.9213-9217, 2007.
DOI : 10.1073/pnas.0703433104

M. Aikawa, Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites, Experimental Parasitology, vol.71, issue.3, pp.326-329, 1990.
DOI : 10.1016/0014-4894(90)90037-D

J. G. Culvenor, Plasmodium falciparum ring-infected erythrocyte surface antigen is release from merozoite dense granules after erythrocyte invasion, Infection and Immunity, vol.59, pp.1183-1187, 1991.

M. Foley, The ring-infected erythrocyte surface antigen protein of Plasmodium falciparum is phosphorylated upon association with the host cell membrane, Molecular and Biochemical Parasitology, vol.38, issue.1, pp.69-76, 1990.
DOI : 10.1016/0166-6851(90)90206-2

M. Foley, The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane, Molecular and Biochemical Parasitology, vol.46, issue.1, pp.137-148, 1991.
DOI : 10.1016/0166-6851(91)90207-M

X. Pei, The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion, Blood, vol.110, issue.3, pp.1036-1042, 2007.
DOI : 10.1182/blood-2007-02-076919

D. Silva and E. , The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability, Molecular and Biochemical Parasitology, vol.66, issue.1, pp.59-69, 1994.
DOI : 10.1016/0166-6851(94)90036-1

M. D. Silva, A role for the Plasmodium falciparum RESA protein in resistance against heat shock demonstrated using gene disruption, Molecular Microbiology, vol.93, issue.4, pp.990-1003, 2005.
DOI : 10.1111/j.1365-2958.2005.04603.x

G. Popescu, Diffraction phase microscopy for quantifying cell structure and dynamics, Optics Letters, vol.31, issue.6, pp.775-777, 2006.
DOI : 10.1364/OL.31.000775

Y. K. Park, Diffraction phase and fluorescence microscopy, Optics Express, vol.14, issue.18, pp.8263-8268, 2006.
DOI : 10.1364/OE.14.008263.m002

H. Bow, A microfabricated deformability-based flow cytometer with application to malaria, Lab on a Chip, vol.105, issue.6, pp.1065-1073, 2011.
DOI : 10.1039/c0lc00472c

G. Deplaine, The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro, Blood, vol.117, issue.8, pp.88-95, 2011.
DOI : 10.1182/blood-2010-10-312801

R. Waugh, Thermoelasticity of red blood cell membrane, Biophysical Journal, vol.26, issue.1, pp.115-131, 1979.
DOI : 10.1016/S0006-3495(79)85239-X

M. Minetti, Spectrin involvement in a 40??C structural transition of the red blood cell membrane, Journal of Cellular Biochemistry, vol.255, issue.4, pp.361-370, 1986.
DOI : 10.1002/jcb.240300409

J. C. Lee, Deformation-Enhanced Fluctuations in the Red Cell Skeleton with Theoretical Relations to Elasticity, Connectivity, and Spectrin Unfolding, Biophysical Journal, vol.81, issue.6, pp.3178-3192, 2001.
DOI : 10.1016/S0006-3495(01)75954-1

P. Srinivasan, Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion, Proceedings of the National Academy of Sciences, vol.108, issue.32, pp.13275-13280, 2011.
DOI : 10.1073/pnas.1110303108

M. E. Hossain, The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion, Parasitology Research, vol.3, issue.3, pp.1711-1721, 2012.
DOI : 10.1007/s00436-011-2690-z

D. T. Riglar, Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte, Cell Host & Microbe, vol.9, issue.1, pp.9-20, 2011.
DOI : 10.1016/j.chom.2010.12.003

X. Li, A Presenilin-like protease associated with Plasmodium falciparum micronemes is involved in erythrocyte invasion, Molecular and Biochemical Parasitology, vol.158, issue.1, pp.22-31, 2008.
DOI : 10.1016/j.molbiopara.2007.11.007

R. A. Mcpherson, Proteolytic digestion of band 3 at an external site alters the erythrocyte membrane organisation and may facilitate malarial invasion, Molecular and Biochemical Parasitology, vol.62, issue.2, pp.233-242, 1993.
DOI : 10.1016/0166-6851(93)90112-B

A. R. Dluzewski, Red cell membrane protein distribution during malarial invasion, J Cell Sci, vol.92, pp.691-699, 1989.

I. Safeukui, Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen, Blood, vol.112, issue.6, pp.2520-2528, 2008.
DOI : 10.1182/blood-2008-03-146779

E. Knuepfer, Trafficking of the major virulence factor to the surface of transfected P falciparum-infected erythrocytes, Blood, vol.105, issue.10, pp.4078-4087, 2005.
DOI : 10.1182/blood-2004-12-4666

S. Sanyal, Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties, Blood, vol.119, issue.2, pp.1-8, 2012.
DOI : 10.1182/blood-2011-08-370734

URL : https://hal.archives-ouvertes.fr/hal-00746749

C. Lambros, Synchronization of Plasmodium falciparum Erythrocytic Stages in Culture, The Journal of Parasitology, vol.65, issue.3, pp.418-420, 1979.
DOI : 10.2307/3280287

Y. Support, P. Tj, and P. Fellowship, The authors also acknowledge the support of the SMART under grant MIE (ANR-08-MIE-031) and the support of the National Center for Research Resources of the National Institutes of Health (9P41-EB015871-26A1). GD was funded by grants from the Délégation Générale a ` l'Armement, NIH) Grant R01HL094270, and the French Agence Nationale de la Recherche (ANR) F. Lacoste (Fondation Ackerman -Fondation de France) and the Région Ile de France