A. Agrawal and D. G. Schatz, RAG1 and RAG2 Form a Stable Postcleavage Synaptic Complex with DNA Containing Signal Ends in V(D)J Recombination, Cell, vol.89, issue.1, pp.43-53, 1997.
DOI : 10.1016/S0092-8674(00)80181-6

S. M. Arnal, A. J. Holub, S. S. Salus, R. , and D. B. , Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways, Nucleic Acids Research, vol.38, issue.9, pp.2944-2954, 2010.
DOI : 10.1093/nar/gkp1252

T. Blunt, N. J. Finnie, G. E. Taccioli, G. C. Smith, J. Demengeot et al., Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation, Cell, vol.80, issue.5, pp.813-823, 1995.
DOI : 10.1016/0092-8674(95)90360-7

M. A. Bogue, C. Wang, C. Zhu, R. , and D. B. , V(D)J Recombination in Ku86-Deficient Mice: Distinct Effects on Coding, Signal, and Hybrid Joint Formation, Immunity, vol.7, issue.1, pp.37-47, 1997.
DOI : 10.1016/S1074-7613(00)80508-7

M. A. Bogue, C. Jhappan, R. , and D. B. , Analysis of variable (diversity) joining recombination in DNAdependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation, Proc. Natl. Acad. Sci. USA 95, pp.15559-15564, 1998.
DOI : 10.1073/pnas.95.26.15559

A. L. Bredemeyer, G. G. Sharma, C. Y. Huang, B. A. Helmink, L. M. Walker et al., ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, Nature, vol.194, issue.7101, pp.466-470, 2006.
DOI : 10.1038/nature04866

I. Callebaut and J. P. And-mornon, The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis, Cellular and Molecular Life Sciences (CMLS), vol.54, issue.8, pp.880-891, 1998.
DOI : 10.1007/s000180050216

B. Corneo, R. L. Wendland, L. Deriano, X. Cui, I. A. Klein et al., Rag mutations reveal robust alternative end joining, Nature, vol.55, issue.7161, pp.483-486, 2007.
DOI : 10.1038/nature06168

C. A. Cuomo and M. A. Oettinger, Analysis of regions of RAG-2 important for V(D)J recombination, Nucleic Acids Research, vol.22, issue.10, pp.1810-1814, 1994.
DOI : 10.1093/nar/22.10.1810

L. Deriano, T. H. Stracker, A. Baker, J. H. Petrini, R. et al., Roles for NBS1 in Alternative Nonhomologous End-Joining of V(D)J Recombination Intermediates, Molecular Cell, vol.34, issue.1, pp.13-25, 2009.
DOI : 10.1016/j.molcel.2009.03.009

L. Deriano, J. Chaumeil, M. Coussens, A. Multani, Y. Chou et al., The RAG2 C terminus suppresses genomic instability and lymphomagenesis, Nature, vol.101, issue.7336, pp.119-123, 2011.
DOI : 10.1038/nature09755

URL : https://hal.archives-ouvertes.fr/pasteur-01471708

H. J. Dyson, Expanding the proteome: disordered and alternatively folded proteins, Quarterly Reviews of Biophysics, vol.78, issue.04, pp.467-518, 2011.
DOI : 10.1016/j.bbrc.2009.02.151

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189428

F. Ferron, S. Longhi, B. Canard, and D. Karlin, A practical overview of protein disorder prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.101, issue.Pt 3, pp.1-14, 2006.
DOI : 10.1002/prot.21075

M. Fuxreiter, Fuzziness: linking regulation to protein dynamics, Mol. BioSyst., vol.399, issue.6734, pp.168-177, 2012.
DOI : 10.1039/C1MB05234A

URL : http://hdl.handle.net/2437/124519

M. Fuxreiter, I. Simon, and S. Bondos, Dynamic protein???DNA recognition: beyond what can be seen, Trends in Biochemical Sciences, vol.36, issue.8, pp.415-423, 2011.
DOI : 10.1016/j.tibs.2011.04.006

G. J. Grundy, W. Yang, and M. Gellert, Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination, Proc. Natl. Acad. Sci. USA, pp.22487-22492, 2010.
DOI : 10.1073/pnas.1014958107

B. A. Helmink and B. P. Sleckman, The Response to and Repair of RAG-Mediated DNA Double-Strand Breaks, Annual Review of Immunology, vol.30, issue.1, pp.175-202, 2012.
DOI : 10.1146/annurev-immunol-030409-101320

K. Hiom and M. Gellert, Assembly of a 12/23 Paired Signal Complex: A Critical Control Point in V(D)J Recombination, Molecular Cell, vol.1, issue.7, pp.1011-1019, 1998.
DOI : 10.1016/S1097-2765(00)80101-X

Y. Ji, W. Resch, E. Corbett, A. Yamane, R. Casellas et al., The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci, Cell, vol.141, issue.3, pp.419-431, 2010.
DOI : 10.1016/j.cell.2010.03.010

J. M. Jones and M. Gellert, Intermediates in V(D)J recombination: A stable RAG1/2 complex sequesters cleaved RSS ends, Proc. Natl. Acad, 2001.
DOI : 10.1073/pnas.221471198

J. M. Jones and C. Simkus, The roles of the RAG1 and RAG2 ''noncore'' regions in V(D)J recombination and lymphocyte development, 2009.

M. A. Landree, J. A. Wibbenmeyer, R. , and D. B. , Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination, Genes & Development, vol.13, issue.23, pp.3059-3069, 1999.
DOI : 10.1101/gad.13.23.3059

G. S. Lee, M. B. Neiditch, S. S. Salus, R. , and D. B. , RAG Proteins Shepherd Double-Strand Breaks to a Specific Pathway, Suppressing Error-Prone Repair, but RAG Nicking Initiates Homologous Recombination, Cell, vol.117, issue.2, pp.171-184, 2004.
DOI : 10.1016/S0092-8674(04)00301-0

URL : http://doi.org/10.1016/s0092-8674(04)00301-0

Z. Li, T. Otevrel, Y. Gao, H. L. Cheng, B. Seed et al., The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination, Cell, vol.83, issue.7, pp.1079-1089, 1995.
DOI : 10.1016/0092-8674(95)90135-3

Z. Li, D. I. Dordai, J. Lee, and S. Desiderio, A Conserved Degradation Signal Regulates RAG-2 Accumulation during Cell Division and Links V(D)J Recombination to the Cell Cycle, Immunity, vol.5, issue.6, pp.575-589, 1996.
DOI : 10.1016/S1074-7613(00)80272-1

M. Li, M. Mizuuchi, T. R. Burke, C. Jr, and R. , Retroviral DNA integration: reaction pathway and critical intermediates, The EMBO Journal, vol.65, issue.6, pp.1295-1304, 2006.
DOI : 10.1016/S0960-894X(03)00059-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422164

B. A. Malynn, T. K. Blackwell, G. M. Fulop, G. A. Rathbun, A. J. Furley et al., The scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism, Cell, vol.54, issue.4, pp.453-460, 1988.
DOI : 10.1016/0092-8674(88)90066-9

M. J. Mizianty, W. Stach, K. Chen, K. D. Kedarisetti, F. M. Disfani et al., Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources, Bioinformatics, vol.26, issue.18, pp.489-496, 2010.
DOI : 10.1093/bioinformatics/btq373

E. Mladenov and G. Iliakis, Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.711, issue.1-2, pp.61-72, 2011.
DOI : 10.1016/j.mrfmmm.2011.02.005

M. A. Oettinger, D. G. Schatz, C. Gorka, and D. Baltimore, RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination, Science, vol.248, issue.4962, pp.1517-1523, 1990.
DOI : 10.1126/science.2360047

P. A. Rice and T. A. Baker, Comparative architecture of transposase and integrase complexes, Nature Structural Biology, vol.8, issue.4, pp.302-307, 2001.
DOI : 10.1038/86166

R. Saada, M. Weinberger, G. Shahaf, and R. Mehr, Models for antigen receptor gene rearrangement: CDR3 length, Immunology and Cell Biology, vol.13, issue.4, pp.323-332, 2007.
DOI : 10.1006/smim.1994.1019

M. J. Sadofsky, J. E. Hesse, and M. Gellert, Definition of a core region of RAG-2 that is functional in V(D)J recombination, Nucleic Acids Research, vol.22, issue.10, pp.1805-1809, 1994.
DOI : 10.1093/nar/22.10.1805

D. G. Schatz and P. C. Swanson, V(D)J Recombination: Mechanisms of Initiation, Annual Review of Genetics, vol.45, issue.1, pp.167-202, 2011.
DOI : 10.1146/annurev-genet-110410-132552

N. Shimazaki, A. G. Tsai, and M. R. Lieber, H3K4me3 Stimulates the V(D)J RAG Complex for Both Nicking and Hairpinning in trans in Addition to Tethering in cis: Implications for Translocations, Molecular Cell, vol.34, issue.5, pp.535-544, 2009.
DOI : 10.1016/j.molcel.2009.05.011

D. Simsek and M. Jasin, Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4???ligase IV during chromosomal translocation formation, Nature Structural & Molecular Biology, vol.5, issue.4, pp.410-416, 2010.
DOI : 10.1038/nsmb.1773

D. Simsek, E. Brunet, S. Y. Wong, S. Katyal, Y. Gao et al., DNA Ligase III Promotes Alternative Nonhomologous End-Joining during Chromosomal Translocation Formation, PLoS Genetics, vol.140, issue.6, 2011.
DOI : 10.1371/journal.pgen.1002080.s007

URL : https://hal.archives-ouvertes.fr/inserm-00715279

P. Soulas-sprauel, L. Guyader, G. Rivera-munoz, P. Abramowski, V. Olivier-martin et al., Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination, The Journal of Experimental Medicine, vol.159, issue.7, pp.1717-1727, 2007.
DOI : 10.4049/jimmunol.171.8.4062

URL : https://hal.archives-ouvertes.fr/hal-00167659

J. A. Tennessen, A. W. Bigham, T. D. O-'connor, W. Fu, E. E. Kenny et al., Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes, Science, vol.337, issue.6090, pp.64-69, 2012.
DOI : 10.1126/science.1219240

C. L. Tsai, A. H. Drejer, and D. G. Schatz, Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination, Genes & Development, vol.16, issue.15, pp.1934-1949, 2002.
DOI : 10.1101/gad.984502

D. Vuzman and Y. Levy, Intrinsically disordered regions as affinity tuners in protein???DNA interactions, Mol. BioSyst., vol.108, issue.1, pp.47-57, 2012.
DOI : 10.1039/C1MB05273J

K. L. West, N. C. Singha, P. De-ioannes, L. Lacomis, H. Erdjument-bromage et al., A Direct Interaction between the RAG2 C Terminus and the Core Histones Is Required for Efficient V(D)J Recombination, Immunity, vol.23, issue.2, pp.203-212, 2005.
DOI : 10.1016/j.immuni.2005.07.004

E. Weterings, C. , and D. J. , The endless tale of non-homologous end-joining, Cell Research, vol.163, issue.1, pp.114-124, 2008.
DOI : 10.1093/nar/gkm579

C. T. Yan, C. Boboila, E. K. Souza, S. Franco, T. R. Hickernell et al., IgH class switching and translocations use a robust non-classical end-joining pathway, Nature, vol.4, issue.7161, pp.478-482, 2007.
DOI : 10.1038/nature06020

B. Yin, V. Savic, M. M. Juntilla, A. L. Bredemeyer, K. S. Yang-iott et al., Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination, The Journal of Experimental Medicine, vol.96, issue.12, pp.2625-2639, 2009.
DOI : 10.1101/gad.10.19.2411

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806628

S. Zha, C. H. Bassing, T. Sanda, J. W. Brush, H. Patel et al., rearrangement and gene amplification, The Journal of Experimental Medicine, vol.96, issue.7, pp.1369-1380, 2010.
DOI : 10.1073/pnas.79.9.3015

L. Zhang, T. L. Reynolds, X. Shan, and S. Desiderio, Coupling of V(D)J Recombination to the Cell Cycle Suppresses Genomic Instability and Lymphoid Tumorigenesis, Immunity, vol.34, issue.2, pp.163-174, 2011.
DOI : 10.1016/j.immuni.2011.02.003

C. Zhu, K. D. Mills, D. O. Ferguson, C. Lee, J. Manis et al., Unrepaired DNA Breaks in p53-Deficient Cells Lead to Oncogenic Gene Amplification Subsequent to Translocations, Cell, vol.109, issue.7, pp.811-821, 2002.
DOI : 10.1016/S0092-8674(02)00770-5