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 The Arp2/3 complex has so far been considered to be a single seven-subunit 

protein complex required for actin nucleation and actin filament polymerization in diverse 

critical cellular functions including phagocytosis, vesicular trafficking, lamellipodia 

extension and cytokinesis. The Arp2/3 complex is also exploited by bacterial pathogens 

and viruses during cellular infectious processes. Three recent studies suggest that some 

subunits of the complex are dispensable in specific cellular contexts, pointing to the 

existence of alternative Arp2/3 complexes containing other components such as vinculin or 

α-actinin, as well as different isoforms or phosphorylation variants of canonical Arp2/3 

subunits. This diversity should be considered when assigning specific Arp2/3 assemblies 

to different actin-dependent cellular processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main Text  



 

 

 

Introduction 

 

 The actin cytoskeleton is one of the main components of eukaryotic cells, not only 

providing the molecular basis for cellular morphogenesis and migration, but also 

participating dynamically in mechanical resistance to deformation, uptake of extracellular 

material, intracellular vesicular transport, cytokinesis and cell adhesion. The actin 

cytoskeleton also participates in the organization of complex cellular structures such as 

filopodia, lamellipodia and podosomes [1,2]. 

 

 Polymerization of actin monomers into actin filaments requires the activity of cellular 

actin nucleators. The Arp2/3 complex, the first nucleator identified in eukaryotic cells, plays 

a central role in many cellular processes and is highly conserved from trypanosomes to 

the fission yeast and humans [3-5]. Other nucleators include formins, Spire, Cordon-bleu 

(COBL) and Leiomodins [6].  

 

 The Arp2/3 complex is composed of seven subunits [7] and it has been traditionally 

considered as a single entity, associated with the vast majority of cellular processes in 

which its function is required and has been studied. Three recent studies [8-10] in the 

same mammalian cell system reveal that diverse Arp2/3 complexes may regulate different 

cellular and pathogen-associated functions, raising the interesting possibility that Arp2/3 

complex compositions may have been overlooked, paving the way for the identification of 

novel complexes associated to different actin polymerization-mediated processes. 

  

Discovery and functions of the classical Arp2/3 complex 

 

 The Arp2/3 complex was first isolated from Acanthamoeba castellanii during a 

search for ligands of the actin-binding protein profilin [11]. It contained seven proteins: the 

actin-related proteins Arp2 (44-kD) and Arp3 (47-kD) considered as „unconventional 

actins‟, together with a 40-kD protein similar to a WD40 ß-propeller protein from 

Dictyostelium discoideum, and four additional proteins of 35-, 19-, 18- and 13-kD [11]. 

Subsequently, the Arp2/3 complex was also identified and associated with actin-rich 

structures in the fission yeast Schizosaccharomyces pombe [12] and in the budding yeast 

Saccharomyces cerevisiae [13]. In human cells, the Arp2/3 complex consists of Arp2 and 

Arp3, together with the Arp complex subunits ARPC1, ARPC2, ARPC3, ARPC4 and 



 

 

ARPC5 [14]. While consensus exists concerning the Arp2 and Arp3 nomenclature, 

different names have been used in the literature concerning the other Arp2/3 complex 

subunits: a nomenclature proposal across species is presented in Table 1. 

 

 The function of the Arp2/3 complex was shown for the first time to be critical in 

triggering actin polymerization when it was isolated from a subcellular fraction of human 

platelets that sustained actin assembly by the bacterial pathogen Listeria monocytogenes 

[15]. The L. monocytogenes surface protein ActA activates the Arp2/3 complex to initiate 

actin polymerization, and was the first actin nucleation promoting factor (NPF) to be 

identified [16,17]. Several mammalian NPFs were subsequently identified, including WASP 

[18], N-WASP [19], Scar/WAVE [20], and cortactin [21] (see Text Box 1). The purified A. 

castellanii Arp2/3 complex was shown to nucleate the formation of actin filaments at 70° 

from other filaments [22]. A series of elegant microscopy and biochemistry investigations 

then definitively established the key role of Arp2/3 in actin polymerization and the 

formation of branched structures [23,24] (see Text Box 2).  

 

 As mentioned above, the function of the Arp2/3 complex is subverted by bacterial 

pathogens at different stages of their infectious processes [25]. The Gram-positive 

pathogen L. monocytogenes uses Arp2/3 not only to mediate intra- and inter cellular 

movements but also to trigger cellular invasion [26-28]. The Gram-negative pathogen 

Shigella flexneri also requires Arp2/3 function for actin-based motility [29] and for bacterial 

internalization within host cells [30]. Interestingly S. flexneri does not express an ActA-like 

protein but instead recruits on its surface, via the protein IcsA/VirG, the NPF N-WASP 

which in turn activates Arp2/3 to mediate actin-based motility [29,31]. The Gram-negative 

bacteria Rickettsia parkerii and R. conorii activate Arp2/3 during early stages of bacterial 

intracellular motility via a protein called RickA [32-34]. Moreover, R. parkerii requires 

Arp2/3 activity to invade diverse host cells [35]. Vaccinia virus is able to move at the 

surface of cells on actin-based structures [36], which requires the function of the Arp2/3 

complex [37]. Other bacteria including Mycobacteria [38] and Burkholderia thailandensis 

also move via an actin-based motility requiring Arp2/3 functions [39-42]. 

 

 In S. pombe and S. cerevisiae, deletions of genes encoding each of the subunits of 

the Arp2/3 complex cause severe growth defects or lethality [43,44], suggesting a major 

role for all subunits in vivo. In particular, Arp2/3 had been shown to be important for the 

formation and function of cortical actin patches where clahtrin-mediated endocytosis takes 



 

 

place [13]. Mammalian Arp2/3 complex was localized to regions of lamellipodial protrusion 

[14,45] and together with cofilin and other actin-binding proteins, was shown to control the 

organization and tread-milling of actin filaments in lamellipodia [23]. The Arp2/3 complex 

has been associated to other cellular functions requiring actin polymerization including 

phagocytosis [46], trafficking within and from the Golgi apparatus [47] as well as formation 

of focal adhesions [48]. The critical role of Arp2/3 in humans is highlighted by the Wiskott-

Aldrich syndrome (WAS), a recessive X-linked genetic disorder characterized by mutations 

in the WAS protein (WASP), which is characterized by defects in the actin-rich 

immunological synapse between T cells and antigen presenting cells, leading to severe 

defects in immunological responses [49,50]. 

 

 Initial detailed analysis of the contribution of each Arp2/3 complex subunit to actin 

polymerization, using L. monocytogenes ActA as a NPF in a baculovirus expression 

system in insect cells, indicated that only Arp2 and Arp3 are directly involved in actin 

polymerization, the role of the other subunits being less clear [51]. More recent structural 

evidence [52] confirms an initial prediction that ARPC2 and ARPC4 provide the main 

surface for interaction of the complex with the mother actin filament [51]. ARPC3 is 

proposed to form a bridge between Arp3 and the mother actin filament [52] but complexes 

lacking ARPC3 display minor functional defects [44,51]. While ARPC1 is supposed to 

make only minor contacts with the mother actin filament [52], complexes lacking this 

subunit are far less effective in actin nucleation, suggesting additional roles for ARPC1 

including binding of NPFs [53]. ARPC5 was proposed to tether Arp2 to the rest of the 

complex [52].  

 

 Several reports also suggest a functional role played by phosphorylation of different 

subunits of the Arp2/3 complex. ARPC1 phosphorylation by p21-activated kinase (Pak1) 

was reported to be crucial for mammalian cell motility [54]. It has been suggested that 

Arp2 phosphorylation is required and critical for Arp2/3 complex binding to the pointed end 

of actin filaments and actin nucleation in cultured Drosophila cells [55], but mutation of the 

phosphorylated residues had only subtle effects on motility in Dictyostelium [56]. As shown 

recently, phosphorylation of Arp3 by the Legionella pneumophila kinase LegK2 inhibits 

actin polymerization at the surface of bacterial-containing phagosomes [57].  

 

 Several subunits of the Arp2/3 complex (i.e. Arp3, ARPC1 and ARPC5) display 

more than one isoform [14], but the functional significance of these variants had not been 



 

 

investigated in detail. While the major subunit Arp3 is detected in all tissues, a gene 

encoding the isoform ARP3β was detected predominantly in brain neuronal cells and was 

proposed to play a role in the development and/or maintenance of nerve cells [58]. Two 

variants of ARPC1 presenting 70% homology had been known for long [12,45] and a 

mutation in the gene ARPC1A was shown to impact cell migration and invasion in 

pancreatic cancer [59].  ARPC5 was also found to display a second isoform, named 

ARPC5B, which exhibited a regular expression in many tissues but with the highest levels 

in the brain, while the original ARPC5A was found highly enriched in the spleen and 

thymus [60]. 

 

Diversity of Arp2/3 complexes 

 

 Focal adhesions. Association of the Arp2/3 complex to focal adhesions in human 

skin cells had previously been shown to require interactions with vinculin [48]. A recent 

native mass spectrometry analysis of proteins extracted from the dense plaques (focal 

adhesion homologous structures) of chicken smooth muscle revealed surprisingly that 

Arp2/3 complexes present in these structures, as inferred from mass spectrometry results, 

are actually „hybrid complexes‟, consisting of a core composed of Arp2, Arp3 and ARPC2, 

together with α-actinin and vinculin, or Arp2, Arp3, ARPC2, ARPC3 and vinculin [8]. This 

study therefore supported, for the first time, the notion that alternative Arp2/3 complexes 

that do not consist of the seven classical subunits are involved in specific cellular 

processes. Notably, these alternative complexes contain vinculin that can mediate the 

recruitment of the complex to focal adhesions and compete with ARPC1B in HeLa cells; 

knock-down of ARPC1B has therefore a positive effect on focal adhesion and stress fiber 

formation, as the equilibrium is shifted towards Arp2/3-vinculin hybrid complexes formation 

[8]. 

 

 Listeria monocytogenes infection. Specific roles for ARPC1A and ARPC1B were 

recently identified in human genome-wide RNA interference (RNAi) screens investigating 

HeLa cell infection by L. monocytogenes [9]. Knock-down of ARPC1B but not of ARPC1A 

significantly diminished bacterial entry, highlighting a critical contribution for ARPC1B 

function in this context. Moreover, it was observed that ARPC4 and ARPC5 subunits do 

not contribute to L. monocytogenes cellular invasion. The contribution of the different 

Arp2/3 subunits to bacterial actin-tail formation was also studied, identifying a major 

contribution of Arp2, Arp3, ARPC1A, ARPC2, ARPC3 and ARPC4 in L. monocytogenes 



 

 

actin-based motility, but no role for ARPC1B nor ARPC5 was found [9]. These results 

therefore show not only that ARPC5 is dispensable for both bacterial entry and actin-tail 

formation but also that ARPC1 isoforms contribute to different cellular processes during L. 

monocytogenes infection, at least in HeLa cells. ARPC4 was found dispensable for 

bacterial entry, but taking into account the central place of this subunit in Arp2/3 complex 

function according to previous functional and structural results [51,52], it is possible that 

residual ARPC4 upon RNAi treatment suffices for partial complex function.  

 

 Vaccinia virus mobility. In a recent study of actin polymerization by Vaccinia virus, 

specific roles for ARPC1B and ARPC5B have been found [10]. Indeed, it has been 

observed that Arp2/3 complexes containing ARPC1B and ARPC5B (named ARPC5L in 

this work) are significantly more efficient at promoting actin assembly than those 

containing ARPC1A and ARPC5A. Actin networks induced by complexes containing the 

subunits ARPC1B and ARPC5B were found more stable since in the presence of these 

specific subunits, cortactin stabilizes the Arp2/3 complexes against coronin-mediated 

disassembly [10].  

 

 Overall, these three reports indicate that only Arp2, Arp3 are directly partaking in 

the actin nucleating activity of the complex, together defining an actin nucleation core 

module, whereas the other subunits serve alternative roles such as determining the 

efficiency of actin nucleation, localization of the complex, as well as serving as an auto-

inhibitory mechanism [8,51,52]. Together, the other subunits thus define the regulatory 

module of the Arp2/3 complex. In the case of the L. monocytogenes model, it is interesting 

to mention that vinculin inactivation by RNAi did not perturb bacterial cellular invasion nor 

actin-based motility [9], raising the possibility that other cellular molecule(s) not yet 

identified may participate to the localization/modulation of the Arp2/3 complex during L. 

monocytogenes infection-related processes. 

 

Concluding Remarks 

 

 While the Arp2/3 complex has been classically considered as a single molecular 

entity for 20 years since its discovery, an emerging possibility from recent research 

suggests that multiple versions of the Arp2/3 complex may co-exist in cells (Figure 1 

presents a summary of currently described complexes and their mode of regulation). 



 

 

Indeed, the subunits ARPC1, ARPC3, ARPC4 and ARPC5 can be replaced by vinculin 

and α-actinin in focal adhesions [8].  

 

 In the case of the L. monocytogenes system, even if dispensable, ARPC5 can be 

detected at both bacterial entry sites and actin comet tails by fluorescence microscopy, 

indicating that Arp2/3 complexes containing this subunit, while not required, may still be 

recruited during both processes [9]. It is possible that Arp2/3 complexes of different 

composition have overlapping functions during L. monocytogenes infection, but current 

data suggests that the precise composition of different Arp2/3 complexes plays a role in 

fine-tuning actin rearrangements in both instances. This hypothesis is supported by the 

observation that ARPC4 can be found predominantly early during bacterial actin comet tail 

formation and that knock down of ARPC4 affects initial actin polymerization at the bacterial 

surface rather than actin tail elongation indicating that different Arp2/3 complexes may be 

required in a sequential manner. The fine tuning of Arp2/3 complex actin polymerization 

activity depending on the subunit composition is also supported by results on the Vaccinia 

virus system [10].  

 

 Overall, the reports discussed herein point to the possibility that Arp2/3 is a natural 

modular nano-machine, capable of regulating its activity via replacement of its subunits. 
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Figure 

 

Figure 1: Diversity of Arp2/3 complexes. Central circle (gray): the canonical 7-subunit 

form. Top left (blue): Arp2/3 complex variants used by Vaccina virus (alternative subunits 

are enclosed by a red line). Many combinations of Arp2/3 subunits are recruited by the 

virus. Bottom left: two “hybrid complexes”, containing the actin nucleation core and 

vinculin, or vinculin plus α-actinin, which presumably localize the complex to focal 

adhesions. Bottom right: Arp2/3 complexes hijacked by L. monocytogenes during cellular 

infection (alternative subunits are enclosed by a red bold line, dispensable subunits are 

enclosed by a red pointed line). Top right: variations in Arp2/3 complexes caused by 

phosphorylation of specific subunits. The effect of the subunit substitution on the actin 

nucleation activity is color coded (red: reduce; green: enhance). 
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Table 1: Arp2/3 complex nomenclature 
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