D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to leishmania major in mice, Nature Reviews Immunology, vol.2, issue.11, pp.845-858, 2002.
DOI : 10.1038/nri933

T. Scharton-kersten and P. Scott, The role of the innate immune response in Th1 cell development following Leishmania major infection, J Leukoc Biol, vol.57, pp.515-522, 1995.

E. Von-stebut, Y. Belkaid, J. T. Sacks, D. Udey, and M. , Immunity, The Journal of Experimental Medicine, vol.65, issue.8, pp.1547-1552, 1998.
DOI : 10.1073/pnas.90.8.3725

S. Akira and H. Hemmi, Recognition of pathogen-associated molecular patterns by TLR family, Immunology Letters, vol.85, issue.2, pp.85-95, 2003.
DOI : 10.1016/S0165-2478(02)00228-6

G. Barton and R. Medzhitov, Toll-Like Receptor Signaling Pathways, Science, vol.300, issue.5625, pp.1524-1525, 2003.
DOI : 10.1126/science.1085536

F. Tuon, V. Amato, H. Bacha, T. Almusawi, and M. Duarte, Toll-Like Receptors and Leishmaniasis, Infection and Immunity, vol.76, issue.3, pp.866-872, 2008.
DOI : 10.1128/IAI.01090-07

M. Faria, F. Reis, and A. Lima, Toll-like receptors in leishmania infections: guardians or promoters?, J Parasitol Res, vol.2012, p.22523644, 2012.

A. Fakher, F. Rachinel, N. Klimczak, M. Louis, J. Doyen et al., TLR9-Dependent Activation of Dendritic Cells by DNA from Leishmania major Favors Th1 Cell Development and the Resolution of Lesions, The Journal of Immunology, vol.182, issue.3, pp.1386-1396, 2009.
DOI : 10.4049/jimmunol.182.3.1386

U. Schleicher, J. Liese, I. Knippertz, C. Kurzmann, and A. Hesse, NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs, The Journal of Experimental Medicine, vol.94, issue.4, pp.893-906, 2007.
DOI : 10.1084/jem.183.4.1501

J. Liese, U. Schleicher, and C. Bogdan, TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis, European Journal of Immunology, vol.20, issue.12, pp.3424-3434, 2007.
DOI : 10.1002/eji.200737182

T. Weinkopff, A. Mariotto, G. Simon, H. Torre, Y. Auderset et al., Role of Toll-Like Receptor 9 Signaling in Experimental Leishmania braziliensis Infection, Infection and Immunity, vol.81, issue.5, pp.1575-1584, 2013.
DOI : 10.1128/IAI.01401-12

L. Carvalho, P. Petritus, A. Trochtenberg, C. Zaph, and D. Hill, Lymph Node Hypertrophy following Leishmania major Infection Is Dependent on TLR9, The Journal of Immunology, vol.188, issue.3, pp.1394-1401, 2012.
DOI : 10.4049/jimmunol.1101018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262876

F. Sepulveda, S. Maschalidi, R. Colisson, L. Heslop, and C. Ghirelli, Critical Role for Asparagine Endopeptidase in??Endocytic Toll-like Receptor Signaling in Dendritic Cells, Immunity, vol.31, issue.5, pp.737-748, 2009.
DOI : 10.1016/j.immuni.2009.09.013

B. Park, M. Brinkmann, E. Spooner, C. Lee, and Y. Kim, Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9, Nature Immunology, vol.320, issue.12, pp.1407-1414, 2008.
DOI : 10.1038/ni.1669

F. Matsumoto, S. Saitoh, R. Fukui, T. Kobayashi, and N. Tanimura, Cathepsins are required for Toll-like receptor 9 responses, Biochemical and Biophysical Research Communications, vol.367, issue.3, pp.693-699, 2008.
DOI : 10.1016/j.bbrc.2007.12.130

S. Ewald, A. Engel, J. Lee, M. Wang, and M. Bogyo, Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase, The Journal of Experimental Medicine, vol.1789, issue.4, pp.643-651, 2011.
DOI : 10.1038/ni1297

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135342

T. Zhang, Y. Maekawa, T. Sakai, Y. Nakano, and K. Ishii, Treatment with cathepsin L inhibitor potentiates Th2-type immune response in Leishmania major-infected BALB/c mice, International Immunology, vol.13, issue.8, pp.975-982, 2001.
DOI : 10.1093/intimm/13.8.975

Y. Maekawa, K. Himeno, H. Ishikawa, H. Hisaeda, and T. Sakai, Switch of CD4+ T cell differentiation from Th2 to Th1 by treatment with cathepsin B inhibitor in experimental leishmaniasis, J Immunol, vol.161, pp.2120-2127, 1998.

I. Gonzalez-leal, B. Röger, A. Schwarz, T. Schirmeister, and T. Reinheckel, Cathepsin B in Antigen-Presenting Cells Controls Mediators of the Th1 Immune Response during Leishmania major Infection, PLoS Neglected Tropical Diseases, vol.31, issue.9, p.25255101, 2014.
DOI : 10.1371/journal.pntd.0003194.s007

M. Michallet, F. Saltel, X. Preville, M. Flacher, and J. Revillard, Cathepsin-B-dependent apoptosis triggered by antithymocyte globulins: a novel mechanism of T-cell depletion, Blood, vol.102, issue.10, pp.3719-3726, 2003.
DOI : 10.1182/blood-2003-04-1075

S. Byrne, A. Aucher, S. Alyahya, M. Elder, and S. Olson, Cathepsin B Controls the Persistence of Memory CD8+ T Lymphocytes, The Journal of Immunology, vol.189, issue.3, pp.1133-1143, 2012.
DOI : 10.4049/jimmunol.1003406

K. Balaji, N. Schaschke, W. Machleidt, M. Catalfamo, and P. Henkart, Surface Cathepsin B Protects Cytotoxic Lymphocytes from Self-destruction after Degranulation, The Journal of Experimental Medicine, vol.73, issue.4, pp.493-503, 2002.
DOI : 10.1038/86297

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196055

K. Baran, A. Ciccone, C. Peters, H. Yagita, and P. Bird, after Encountering and Killing Target Cells, Journal of Biological Chemistry, vol.281, issue.41, pp.30485-30491, 2006.
DOI : 10.1074/jbc.M602007200

G. Shi, J. Villadangos, G. Dranoff, C. Small, and L. Gu, Cathepsin S Required for Normal MHC Class II Peptide Loading and Germinal Center Development, Immunity, vol.10, issue.2, pp.197-206, 1999.
DOI : 10.1016/S1074-7613(00)80020-5

URL : http://doi.org/10.1016/s1074-7613(00)80020-5

J. Deussing, W. Roth, P. Saftig, C. Peters, and H. Ploegh, Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation, Proceedings of the National Academy of Sciences, vol.95, issue.8, pp.4516-4521, 1998.
DOI : 10.1073/pnas.95.8.4516

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC22521

W. Roth, J. Deussing, V. Botchkarev, M. Pauly-evers, and P. Saftig, Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling, The FASEB Journal, vol.14, issue.13, pp.2075-2086, 2000.
DOI : 10.1096/fj.99-0970com

S. Matthews, I. Werber, J. Deussing, C. Peters, and T. Reinheckel, Distinct Protease Requirements for Antigen Presentation In Vitro and In Vivo, The Journal of Immunology, vol.184, issue.5, pp.2423-2431, 2010.
DOI : 10.4049/jimmunol.0901486

R. Titus, M. Marchand, T. Boon, and J. Louis, A limiting dilution assay for quantifying Leishmania major in tissues of infected mice, Parasite Immunology, vol.118, issue.5, pp.545-555, 1985.
DOI : 10.1111/j.1600-065X.1982.tb00378.x

M. Khan, C. Borde, E. Rocha, V. Meriaux, and V. Marechal, TLR9 Activation Is Triggered by the Excess of Stimulatory versus Inhibitory Motifs Present in Trypanosomatidae DNA, PLoS Neglected Tropical Diseases, vol.41, issue.11, p.25392997, 2014.
DOI : 10.1371/journal.pntd.0003308.s008

URL : https://hal.archives-ouvertes.fr/hal-01342968

K. Inaba, M. Inaba, N. Romani, H. Aya, and M. Deguchi, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, Journal of Experimental Medicine, vol.176, issue.6, pp.1693-1702, 1992.
DOI : 10.1084/jem.176.6.1693

B. Rocha, C. Penit, C. Baron, F. Vasseur, and N. Dautigny, Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs: minimal estimates of prodution and turnover rates of mature lymphocytes, European Journal of Immunology, vol.15, issue.8, pp.1697-1708, 1990.
DOI : 10.1002/eji.1830200812

D. Depledge, K. Evans, A. Ivens, N. Aziz, and A. Maroof, Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds, PLoS Neglected Tropical Diseases, vol.32, issue.2, p.19582145, 2009.
DOI : 10.1371/journal.pntd.0000476.s005

K. Onishi, Y. Li, K. Ishii, H. Hisaeda, and L. Tang, Cathepsin L is crucial for a Th1-type immune response during Leishmania major infection, Microbes and Infection, vol.6, issue.5, pp.468-474, 2004.
DOI : 10.1016/j.micinf.2004.01.008

A. Lennon-dumenil, A. Bakker, R. Maehr, E. Fiebiger, and H. Overkleeft, Analysis of Protease Activity in Live Antigen-presenting Cells Shows Regulation of the Phagosomal Proteolytic Contents During Dendritic Cell Activation, The Journal of Experimental Medicine, vol.14, issue.4, pp.529-540, 2002.
DOI : 10.1016/S0960-9822(01)00118-X

J. Liu, S. Cao, L. Herman, and X. Ma, Differential Regulation of Interleukin (IL)-12 p35 and p40 Gene Expression and Interferon (IFN)-?????primed IL-12 Production by IFN Regulatory Factor 1, The Journal of Experimental Medicine, vol.91, issue.8, pp.1265-1276, 2003.
DOI : 10.4049/jimmunol.165.1.271

S. Ha, A. Martins, K. Khazaie, J. Han, and B. Chan, Cathepsin B Is Involved in the Trafficking of TNF-??-Containing Vesicles to the Plasma Membrane in Macrophages, The Journal of Immunology, vol.181, issue.1, pp.690-697, 2008.
DOI : 10.4049/jimmunol.181.1.690

C. Allenbach, P. Launois, C. Mueller, and F. Tacchini-cottier, An essential role for transmembrane TNF in the resolution of the inflammatory lesion induced byLeishmania major infection, European Journal of Immunology, vol.57, issue.3, pp.720-731, 2008.
DOI : 10.1002/eji.200737662

U. Ritter, J. Mattner, J. Rocha, C. Bogdan, and H. Korner, The control of Leishmania (Leishmania) major by TNF in vivo is dependent on the parasite strain, Microbes and Infection, vol.6, issue.6, pp.559-565, 2004.
DOI : 10.1016/j.micinf.2004.02.008

B. Cathepsin, Cells Expedite Resolution in Leishmaniasis PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd, 2016.

T. Zhang, Y. Maekawa, J. Hanba, T. Dainichi, and B. Nashed, Lysosomal cathepsin B plays an important role in antigen processing, while cathepsin D is involved in degradation of the invariant chain in ovalbumin-immunized mice, Immunology, vol.161, issue.1, pp.13-20, 2000.
DOI : 10.1126/science.274.5287.618

M. Yuseff, P. Pierobon, A. Reversat, and A. Lennon-dumenil, How B cells capture, process and present antigens: a crucial role for cell polarity, Nature Reviews Immunology, vol.119, issue.7, pp.475-486, 2013.
DOI : 10.1038/nri3469

P. Kaye and P. Scott, Leishmaniasis: complexity at the host???pathogen interface, Nature Reviews Microbiology, vol.74, issue.8, pp.604-615, 2011.
DOI : 10.1038/nrmicro2608

T. Laskay, G. Van-zandbergen, and W. Solbach, Neutrophil granulocytes ??? Trojan horses for Leishmania major and other intracellular microbes?, Trends in Microbiology, vol.11, issue.5, pp.210-214, 2003.
DOI : 10.1016/S0966-842X(03)00075-1

N. Moskowitz, D. Brown, and S. Reiner, Efficient immunity against Leishmania major in the absence of interleukin-6, Infect Immun, vol.65, pp.2448-2450, 1997.

R. Titus, G. Dekrey, R. Morris, and M. Soares, Interleukin-6 Deficiency Influences Cytokine Expression in Susceptible BALB Mice Infected with Leishmania major but Does Not Alter the Outcome of Disease, Infection and Immunity, vol.69, issue.8, pp.5189-5192, 2001.
DOI : 10.1128/IAI.69.8.5189-5192.2001

W. Wu, L. Weigand, and S. Mendez, and CpG oligodeoxynucleotides, Canadian Journal of Microbiology, vol.55, issue.6, pp.705-713, 2009.
DOI : 10.1139/W09-017

J. Ehrchen, K. Roebrock, D. Foell, N. Nippe, V. Stebut et al., Keratinocytes Determine Th1 Immunity during Early Experimental Leishmaniasis, PLoS Pathogens, vol.76, issue.203, p.20442861, 2010.
DOI : 10.1371/journal.ppat.1000871.s010

URL : http://doi.org/10.1371/journal.ppat.1000871

G. Orlowski, J. Colbert, S. Sharma, M. Bogyo, and S. Robertson, Multiple Cathepsins Promote Pro???IL-1?? Synthesis and NLRP3-Mediated IL-1?? Activation, The Journal of Immunology, vol.195, issue.4, pp.1685-1697, 2015.
DOI : 10.4049/jimmunol.1500509

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530060

S. Reiner and R. Locksley, The Regulation of Immunity to Leishmania Major, Annual Review of Immunology, vol.13, issue.1, pp.151-177, 1995.
DOI : 10.1146/annurev.iy.13.040195.001055

J. Alexander and K. Bryson, T helper (h)1/Th2 and : paradox rather than paradigm, Immunology Letters, vol.99, issue.1, pp.17-23, 2005.
DOI : 10.1016/j.imlet.2005.01.009

T. Biedermann, S. Zimmermann, H. Himmelrich, A. Gumy, and O. Egeter, IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice, Nature Immunology, vol.164, issue.11, pp.1054-1060, 2001.
DOI : 10.1038/ni725

Y. Belkaid, C. Piccirillo, S. Mendez, E. Shevach, and D. Sacks, CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity, Nature, vol.223, issue.6915, pp.502-507, 2002.
DOI : 10.1038/nature01152

S. Mendez, S. Reckling, C. Piccirillo, D. Sacks, and Y. Belkaid, Regulatory T Cells in Reactivation of Persistent Leishmaniasis and Control of Concomitant Immunity, The Journal of Experimental Medicine, vol.148, issue.2, pp.201-210, 2004.
DOI : 10.1097/00007890-200208270-00001

M. Michallet, F. Saltel, M. Flacher, J. Revillard, and L. Genestier, Cathepsin-Dependent Apoptosis Triggered by Supraoptimal Activation of T Lymphocytes: A Possible Mechanism of High Dose Tolerance, The Journal of Immunology, vol.172, issue.9, pp.5405-5414, 2004.
DOI : 10.4049/jimmunol.172.9.5405

N. Liu, T. Phillips, M. Zhang, Y. Wang, and J. Opferman, Serine protease inhibitor 2A is a protective factor for memory T cell development, Nature Immunology, vol.168, issue.9, pp.919-926, 2004.
DOI : 10.1089/104303400750001435

A. Lalanne, I. Moraga, Y. Hao, J. Pereira, and N. Alves, CpG Inhibits Pro-B Cell Expansion through a Cathepsin B-Dependent Mechanism, The Journal of Immunology, vol.184, issue.10, pp.5678-5685, 2010.
DOI : 10.4049/jimmunol.0903854

URL : https://hal.archives-ouvertes.fr/pasteur-00481956

K. Menzel, M. Hausmann, F. Obermeier, K. Schreiter, and N. Dunger, Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo, Clinical and Experimental Immunology, vol.624, issue.1, pp.169-180, 2006.
DOI : 10.1073/pnas.112632299

Y. Hashimoto, H. Kakegawa, Y. Narita, Y. Hachiya, and T. Hayakawa, Significance of Cathepsin B Accumulation in Synovial Fluid of Rheumatoid Arthritis, Biochemical and Biophysical Research Communications, vol.283, issue.2, pp.334-339, 2001.
DOI : 10.1006/bbrc.2001.4787

Y. Belkaid, V. Stebut, E. Mendez, S. Lira, R. Caler et al., CD8+ T Cells Are Required for Primary Immunity in C57BL/6 Mice Following Low-Dose, Intradermal Challenge with Leishmania major, The Journal of Immunology, vol.168, issue.8, pp.3992-4000, 2002.
DOI : 10.4049/jimmunol.168.8.3992

U. Repnik, A. Starr, C. Overall, and B. Turk, Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines, Journal of Biological Chemistry, vol.290, issue.22, pp.13800-13811, 2015.
DOI : 10.1074/jbc.M115.638395

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447957