B. Batteiger, Chlamydia infection and epidemiology Intracellular pathogens I; Chlamydiales, 2012.

Y. Abdelrahman and R. Belland, The chlamydial developmental cycle: Figure 1, FEMS Microbiology Reviews, vol.29, issue.5, pp.949-959, 2005.
DOI : 10.1016/j.femsre.2005.03.002

D. Levitt, B. Zable, and J. Bard, Binding, ingestion, and growth ofChlamydia trachomatis (L2 serovar) analyzed by flow cytometry, Cytometry, vol.1, issue.4, pp.378-383, 1986.
DOI : 10.1002/cyto.990070413

K. Molleken, E. Schmidt, and J. Hegemann, Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs, Molecular Microbiology, vol.274, issue.3, pp.1004-1017, 2010.
DOI : 10.1111/j.1365-2958.2010.07386.x

R. Carabeo, S. Grieshaber, E. Fischer, and T. Hackstadt, Chlamydia trachomatis Induces Remodeling of the Actin Cytoskeleton during Attachment and Entry into HeLa Cells, Infection and Immunity, vol.70, issue.7, pp.3793-3803, 2002.
DOI : 10.1128/IAI.70.7.3793-3803.2002

A. Subtil, B. Wyplosz, M. Balañá, and A. Dautry-varsat, Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity, Journal of Cell Science, vol.117, issue.17, pp.3923-3933, 2004.
DOI : 10.1242/jcs.01247

URL : https://hal.archives-ouvertes.fr/pasteur-00166949

E. Shaw, C. Dooley, E. Fischer, M. Scidmore, and K. Fields, developmental cycle, Molecular Microbiology, vol.273, issue.4, pp.913-925, 2000.
DOI : 10.1046/j.1365-2958.2000.02057.x

I. Osaka, J. Hills, S. Kieweg, H. Shinogle, and D. Moore, An Automated Image-Based Method for Rapid Analysis of Chlamydia Infection as a Tool for Screening Antichlamydial Agents, Antimicrobial Agents and Chemotherapy, vol.56, issue.8, pp.4184-4188, 2012.
DOI : 10.1128/AAC.00427-12

A. Bogdanov, V. Endresz, S. Urban, I. Lantos, and J. Deak, Application of DNA Chip Scanning Technology for Automatic Detection of Chlamydia trachomatis and Chlamydia pneumoniae Inclusions, Antimicrobial Agents and Chemotherapy, vol.58, issue.1, 2013.
DOI : 10.1128/AAC.01400-13

R. Gerloff, D. Ritter, and R. Watson, Counting Chlamydial Particles by Negative Staining with Congo Red, Journal of Infectious Diseases, vol.123, issue.4, pp.429-432, 1971.
DOI : 10.1093/infdis/123.4.429

Y. Wang, S. Kahane, L. Cutcliffe, R. Skilton, and P. Lambden, Development of a Transformation System for Chlamydia trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector, PLoS Pathogens, vol.1, issue.9, p.1002258, 2011.
DOI : 10.1371/journal.ppat.1002258.s009

J. Wickstrum, L. Sammons, K. Restivo, and P. Hefty, Conditional Gene Expression in Chlamydia trachomatis Using the Tet System, PLoS ONE, vol.132, issue.10, p.76743, 2013.
DOI : 10.1371/journal.pone.0076743.s004

H. Agaisse and I. Derre, A C. trachomatis Cloning Vector and the Generation of C. trachomatis Strains Expressing Fluorescent Proteins under the Control of a C. trachomatis Promoter, PLoS ONE, vol.66, issue.2, p.57090, 2013.
DOI : 10.1371/journal.pone.0057090.s011

M. Scidmore, Cultivation and laboratory maintenance of Chlamydia trachomatis, pp.11-11, 2005.

C. Delevoye, M. Nilges, P. Dehoux, F. Paumet, and S. Perrinet, SNARE Protein Mimicry by an Intracellular Bacterium, PLoS Pathogens, vol.137, issue.3, p.1000022, 2008.
DOI : 10.1371/journal.ppat.1000022.s006

URL : https://hal.archives-ouvertes.fr/pasteur-00332618

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Herve, and S. Pop, Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, issue.7, pp.690-696, 2012.
DOI : 10.1038/nmeth.2075

J. Olivo-marin, Extraction of spots in biological images using multiscale products, Pattern Recognition, vol.35, issue.9, pp.1989-2016, 2002.
DOI : 10.1016/S0031-3203(01)00127-3

H. Boleti, A. Benmerah, D. Ojcius, N. Cerf-bensussan, and A. Dautry-varsat, Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth, J Cell Sci, vol.112, pp.1487-1496, 1999.

B. Coombes and J. Mahony, Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells, Cellular Microbiology, vol.16, issue.5522, pp.447-460, 2002.
DOI : 10.1046/j.1462-5822.2000.00059.x

M. Ward and A. Murray, Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis, J Gen Microbiol, vol.130, pp.1765-1780, 1984.

C. Delevoye, M. Nilges, A. Dautry-varsat, and A. Subtil, Conservation of the Biochemical Properties of IncA from Chlamydia trachomatis and Chlamydia caviae: OLIGOMERIZATION OF IncA MEDIATES INTERACTION BETWEEN FACING MEMBRANES, Journal of Biological Chemistry, vol.279, issue.45, pp.46896-46906, 2004.
DOI : 10.1074/jbc.M407227200

URL : https://hal.archives-ouvertes.fr/pasteur-00166945

R. Belland, G. Zhong, D. Crane, D. Hogan, and D. Sturdevant, Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8478-8483, 2003.
DOI : 10.1073/pnas.1331135100

M. Walsh, E. Kappus, and T. Quinn, In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis., Antimicrobial Agents and Chemotherapy, vol.31, issue.5, pp.811-812, 1987.
DOI : 10.1128/AAC.31.5.811

R. Hodinka and P. Wyrick, Ultrastructural-Study of Mode of Entry of Chlamydia-Psittaci into L-929 Cells, Infect Immun, vol.54, pp.855-863, 1986.

H. Ding, S. Gong, Y. Tian, Z. Yang, and R. Brunham, Transformation of Sexually Transmitted Infection-Causing Serovars of Chlamydia trachomatis Using Blasticidin for Selection, PLoS ONE, vol.171, issue.11, p.80534, 2013.
DOI : 10.1371/journal.pone.0080534.s001

H. Gerard, M. Mishra, G. Mao, S. Wang, and M. Hali, Dendrimer-enabled DNA delivery and transformation of Chlamydia pneumoniae, Nanomedicine: Nanotechnology, Biology and Medicine, vol.9, issue.7, pp.996-1008, 2013.
DOI : 10.1016/j.nano.2013.04.004