A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-498, 1961.
DOI : 10.1083/jcb.9.2.493

B. Gayraud-morel, F. Chrétien, and S. Tajbakhsh, Skeletal muscle as a paradigm for regenerative biology and medicine, Regenerative Medicine, vol.4, issue.2, pp.293-319, 2009.
DOI : 10.2217/17460751.4.2.293

S. Tajbakhsh, Skeletal muscle stem cells in developmental versus regenerative myogenesis, Journal of Internal Medicine, vol.116, issue.4, 19765181.
DOI : 10.1111/j.1365-2796.2009.02158.x

P. Zammit, T. Partridge, and Z. Yablonka-reuveni, The Skeletal Muscle Satellite Cell: The Stem Cell That Came in From the Cold, Journal of Histochemistry & Cytochemistry, vol.119, issue.11, pp.1177-91, 2006.
DOI : 10.1038/35089085

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-69, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

R. Abou-khalil, R. Mounier, and B. Chazaud, Regulation of myogenic stem cell behaviour by vessel cells: The "m??nage ?? trois" of satellite cells, periendothelial cells and endothelial cells, Cell Cycle, vol.9, issue.5, pp.892-898, 2010.
DOI : 10.4161/cc.9.5.10851

M. Murphy, J. Lawson, S. Mathew, D. Hutcheson, and G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, issue.17, pp.3625-3662, 2011.
DOI : 10.1242/dev.064162

B. Gayraud-morel, F. Chrétien, P. Flamant, D. Gomès, P. Zammit et al., A role for the myogenic determination gene Myf5 in adult regenerative myogenesis, Developmental Biology, vol.312, issue.1, pp.13-28, 2007.
DOI : 10.1016/j.ydbio.2007.08.059

L. Katsimpardi, N. Litterman, P. Schein, C. Miller, F. Loffredo et al., Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors, Science, vol.344, issue.6184, pp.630-634, 2014.
DOI : 10.1126/science.1251141

M. Egerman, S. Cadena, J. Gilbert, A. Meyer, H. Nelson et al., GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration, Cell Metabolism, vol.22, issue.1, pp.164-74, 2015.
DOI : 10.1016/j.cmet.2015.05.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497834

C. Brun and M. Rudnicki, GDF11 and the Mythical Fountain of Youth, Cell Metabolism, vol.22, issue.1, pp.54-60, 2015.
DOI : 10.1016/j.cmet.2015.05.009

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

M. Ema, S. Takahashi, and J. Rossant, Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors, Blood, vol.107, issue.1, pp.111-117, 2006.
DOI : 10.1182/blood-2005-05-1970

M. Latil, P. Rocheteau, L. Châtre, S. Sanulli, S. Mémet et al., Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nature Communications, vol.76, p.22692546
DOI : 10.1038/ncomms1890

URL : https://hal.archives-ouvertes.fr/pasteur-00711881

R. Dixon and J. Harris, Myotoxic Activity of the Toxic Phospholipase, Notexin, from the Venom of the Australian Tiger Snake, Journal of Neuropathology and Experimental Neurology, vol.55, issue.12, pp.1230-1237, 1996.
DOI : 10.1097/00005072-199612000-00006

J. Harris, M. Johnson, and E. Karlsson, Proceedings: Histological and histochemical aspects of the effect of notexin on rat skeletal muscle, Br J Pharmacol, vol.52, 1974.

C. Chang, S. Chuang, C. Lee, and J. Wei, Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom, British Journal of Pharmacology, vol.53, issue.4, pp.752-764, 1972.
DOI : 10.1111/j.1476-5381.1972.tb07313.x

J. Scharner and P. Zammit, The muscle satellite cell at 50: the formative years, Skeletal Muscle, vol.1, issue.1, p.21849021, 2011.
DOI : 10.1242/dev.067587

D. Campion, The Muscle Satellite Cell: A Review, Int Rev Cytol, vol.87, pp.225-51, 1984.
DOI : 10.1016/S0074-7696(08)62444-4

R. Bischoff, A satellite cell mitogen from crushed adult muscle, Developmental Biology, vol.115, issue.1, pp.140-147, 1986.
DOI : 10.1016/0012-1606(86)90235-6

R. Bischoff, Proliferation of muscle satellite cells on intact myofibers in culture, Developmental Biology, vol.115, issue.1, pp.129-139, 1986.
DOI : 10.1016/0012-1606(86)90234-4

C. Lepper, T. Partridge, and C. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3685, 2011.
DOI : 10.1242/dev.067595

R. Sambasivan, R. Yao, A. Kissenpfennig, L. Van-wittenberghe, A. Paldi et al., Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.17, pp.3647-56, 2011.
DOI : 10.1242/dev.067587

URL : https://hal.archives-ouvertes.fr/hal-00667781

A. Spradling, D. Drummond-barbosa, and K. T. , Stem cells find their niche, Nature, vol.414, issue.6859, pp.98-104, 2001.
DOI : 10.1038/35102160

B. Chazaud, C. Sonnet, P. Lafuste, G. Bassez, A. Rimaniol et al., Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, The Journal of Cell Biology, vol.47, issue.5, pp.1133-1176, 2003.
DOI : 10.1016/S0002-9440(10)62537-0

S. Gordon and . The-macrophage, The macrophage, BioEssays, vol.56, issue.11, pp.977-86, 1995.
DOI : 10.1002/bies.950171111

I. Mclennan, Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions, J Anat.Pt Available, vol.188, issue.1, pp.17-28, 1996.

M. Grounds, Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice, The Journal of Pathology, vol.248, issue.1, pp.71-82, 1987.
DOI : 10.1002/path.1711530110

L. Lescaudron, E. Peltékian, J. Fontaine-pérus, D. Paulin, M. Zampieri et al., Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant, Neuromuscular Disorders, vol.9, issue.2, pp.72-80, 1999.
DOI : 10.1016/S0960-8966(98)00111-4

C. Collins, I. Olsen, P. Zammit, L. Heslop, A. Petrie et al., Stem Cell Function, Self-Renewal, and Behavioral Heterogeneity of Cells from the Adult Muscle Satellite Cell Niche, Cell, vol.122, issue.2, pp.289-301, 2005.
DOI : 10.1016/j.cell.2005.05.010

J. Hall, G. Banks, J. Chamberlain, and B. Olwin, Prevention of Muscle Aging by Myofiber-Associated Satellite Cell Transplantation, Science Translational Medicine, vol.2, issue.57, p.21068442, 2010.
DOI : 10.1126/scitranslmed.3001081

T. Kitamoto and K. Hanaoka, Notch3 Null Mutation in Mice Causes Muscle Hyperplasia by Repetitive Muscle Regeneration, STEM CELLS, vol.15, issue.12, pp.2205-2221, 2010.
DOI : 10.1002/stem.547

A. Sacco, R. Doyonnas, P. Kraft, S. Vitorovic, and H. Blau, Self-renewal and expansion of single transplanted muscle stem cells, Nature, vol.46, issue.7221, pp.502-508, 2008.
DOI : 10.1038/nature07384

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. Blasco, and S. Tajbakhsh, A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division, Cell, vol.148, issue.1-2, pp.112-125, 2012.
DOI : 10.1016/j.cell.2011.11.049

V. Shinin, B. Gayraud-morel, D. Gomès, and S. Tajbakhsh, Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells, Nature Cell Biology, vol.80, issue.7, pp.677-87, 2006.
DOI : 10.1038/nature02876

S. Kuang, K. Kuroda, L. Grand, F. Rudnicki, and M. , Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle, Cell, vol.129, issue.5, pp.999-1010, 2007.
DOI : 10.1016/j.cell.2007.03.044

Y. Ono, L. Boldrin, P. Knopp, J. Morgan, and P. Zammit, Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles, Developmental Biology, vol.337, issue.1, pp.29-41, 2010.
DOI : 10.1016/j.ydbio.2009.10.005

C. Collins and T. Partridge, Self-Renewal of the Adult Skeletal Muscle Satellite Cell, Cell Cycle, vol.4, issue.10, pp.1338-1379, 2005.
DOI : 10.4161/cc.4.10.2114

N. Motohashi and A. Asakura, Muscle satellite cell heterogeneity and self-renewal, Frontiers in Cell and Developmental Biology, vol.2, p.25364710, 2014.
DOI : 10.3389/fcell.2014.00001

URL : http://doi.org/10.3389/fcell.2014.00001

C. Christov, F. Chretien, R. Abou-khalil, G. Bassez, G. Vallet et al., Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Molecular Biology of the Cell, vol.18, issue.4, pp.1397-140917287398, 2007.
DOI : 10.1091/mbc.E06-08-0693

URL : https://hal.archives-ouvertes.fr/inserm-00128985

R. Mounier, F. Chrétien, and B. Chazaud, Blood Vessels and the Satellite Cell Niche, Curr Top Dev Biol, vol.96, pp.121-159, 2011.
DOI : 10.1016/B978-0-12-385940-2.00005-X

M. Csete, J. Walikonis, N. Slawny, Y. Wei, S. Korsnes et al., Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture, Journal of Cellular Physiology, vol.47, issue.2, pp.189-96, 2001.
DOI : 10.1002/jcp.10016

R. Abou-khalil, L. Grand, F. Pallafacchina, G. Valable, S. Authier et al., Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, issue.3, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

URL : http://doi.org/10.1016/j.stem.2009.06.001

M. Chakravarthy, E. Spangenburg, and F. Booth, Culture in low levels of oxygen enhances in vitro proliferation potential of satellite cells from old skeletal muscles, Cellular and Molecular Life Sciences, vol.58, issue.8, pp.1150-1158, 2001.
DOI : 10.1007/PL00000929

F. Price, J. Von-maltzahn, C. Bentzinger, N. Dumont, H. Yin et al., Inhibition of JAK-STAT signaling stimulates adult satellite cell function, Nature Medicine, vol.34, issue.10, pp.1174-81, 2014.
DOI : 10.1038/nm.3655

J. Doles and B. Olwin, The impact of JAK-STAT signaling on muscle regeneration, Nature Medicine, vol.25, issue.10, pp.1094-1099, 2014.
DOI : 10.1038/nm.3720

M. Tierney, T. Aydogdu, D. Sala, B. Malecova, S. Gatto et al., STAT3 signaling controls satellite cell expansion and skeletal muscle repair, Nature Medicine, vol.20, issue.10, pp.1182-1188, 2014.
DOI : 10.1038/nm.3656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332844