B. L. Herwaldt, Leishmaniasis, The Lancet, vol.354, issue.9185, pp.1191-1199, 1999.
DOI : 10.1016/S0140-6736(98)10178-2

H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia, Advances in leishmaniasis, The Lancet, vol.366, issue.9496, pp.1561-1577, 2005.
DOI : 10.1016/S0140-6736(05)67629-5

D. Zilberstein, Physiological and biochemical aspects of Leishmania development, Leishmania After the Genome, pp.107-122, 2008.

Y. Saar, A. Ransford, E. Waldman, S. Mazareb, S. Amin-spector et al., Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani, Molecular and Biochemical Parasitology, vol.95, issue.1, pp.9-20, 1998.
DOI : 10.1016/S0166-6851(98)00062-0

A. Debrabant, M. B. Joshi, P. F. Pimenta, and D. M. Dwyer, Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics, International Journal for Parasitology, vol.34, issue.2, pp.205-217, 2004.
DOI : 10.1016/j.ijpara.2003.10.011

P. A. Bates, C. D. Robertson, L. Tetley, and G. H. Coombs, Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms, Parasitology, vol.7, issue.02, pp.193-202, 1992.
DOI : 10.1016/0014-4894(91)90104-5

E. Barak, S. Amin-spector, E. Gerliak, S. Goyard, N. Holland et al., Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response, Molecular and Biochemical Parasitology, vol.141, issue.1, pp.99-108, 2005.
DOI : 10.1016/j.molbiopara.2005.02.004

A. Saxena, T. Lahav, N. Holland, G. Aggarwal, A. Anupama et al., Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation, Molecular and Biochemical Parasitology, vol.152, issue.1, pp.53-65, 2007.
DOI : 10.1016/j.molbiopara.2006.11.011

T. Lahav, D. Sivam, H. Volpin, M. Ronen, P. Tsigankov et al., Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania, The FASEB Journal, vol.25, issue.2, pp.515-525, 2011.
DOI : 10.1096/fj.10-157529

D. Rosenzweig, D. Smith, F. Opperdoes, S. Stern, R. W. Olafson et al., Retooling Leishmania metabolism: from sand fly gut to human macrophage, The FASEB Journal, vol.22, issue.2, pp.590-602, 2008.
DOI : 10.1096/fj.07-9254com

S. Cloutier, M. Laverdiere, M. N. Chou, N. Boilard, C. Chow et al., Translational Control through eIF2alpha Phosphorylation during the Leishmania Differentiation Process, PLoS ONE, vol.280, issue.5, p.35085, 2012.
DOI : 10.1371/journal.pone.0035085.s002

URL : http://doi.org/10.1371/journal.pone.0035085

J. C. Mottram and G. H. Coombs, Leishmania mexicana: Enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals, Experimental Parasitology, vol.59, issue.2, pp.151-160, 1985.
DOI : 10.1016/0014-4894(85)90067-0

T. Naderer, M. A. Ellis, M. F. Sernee, D. P. De-souza, J. Curtis et al., Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase, Proc. Natl. Acad. Sci. U.S.A. 103, pp.5502-5507, 2006.
DOI : 10.1073/pnas.0509196103

P. Tsigankov, P. F. Gherardini, M. Helmer-citterich, and D. Zilberstein, What has proteomics taught us about Leishmania development?, Parasitology, vol.58, issue.09, pp.1146-1157, 2012.
DOI : 10.1186/1471-2164-11-31

D. Rosenzweig, D. Smith, P. J. Myler, R. W. Olafson, and D. Zilberstein, Post-translational modification of cellular proteins duringLeishmania donovani differentiation, PROTEOMICS, vol.281, issue.9, pp.1843-1850, 2008.
DOI : 10.1002/pmic.200701043

J. Ptacek, G. Devgan, G. Michaud, H. Zhu, X. Zhu et al., Global analysis of protein phosphorylation in yeast, Nature, vol.285, issue.7068, pp.679-684, 2005.
DOI : 10.1038/nature04187

P. Tsigankov, P. F. Gherardini, M. Helmer-citterich, G. F. Spath, and D. Zilberstein, Parasites Reveals a Unique Stage-Specific Phosphorylation Motif, Journal of Proteome Research, vol.12, issue.7, pp.3405-3412, 2013.
DOI : 10.1021/pr4002492

URL : https://hal.archives-ouvertes.fr/pasteur-01433421

M. A. Morales, R. Watanabe, C. Laurent, P. Lenormand, J. C. Rousselle et al., Phosphoproteomic analysis ofLeishmania donovani pro- and amastigote stages, PROTEOMICS, vol.38, issue.2, pp.350-363, 2008.
DOI : 10.1002/pmic.200700697

S. Zimmermann, H. Moll, W. Solbach, and C. G. Luder, Meeting Report IFoLeish-2008: Current Status and Future Challenges in Leishmania Research and Leishmaniasis, Protist, vol.160, issue.2, pp.151-158, 2009.
DOI : 10.1016/j.protis.2008.12.001

M. A. Morales, R. Watanabe, M. Dacher, P. Chafey, J. Osorio-y-fortea et al., Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage, Proc. Natl. Acad. Sci. U.S.A. 107, pp.8381-8386, 2010.
DOI : 10.1073/pnas.0914768107

URL : https://hal.archives-ouvertes.fr/pasteur-00476914

I. V. Shilov, S. L. Seymour, A. A. Patel, A. Loboda, W. H. Tang et al., The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra, Molecular & Cellular Proteomics, vol.6, issue.9, pp.1638-1655, 2007.
DOI : 10.1074/mcp.T600050-MCP200

A. I. Saeed, V. Sharov, J. White, J. Li, W. Liang et al., TM4: a free, opensource system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A. 102, pp.15545-15550, 2005.
DOI : 10.1073/pnas.0506580102

K. H. Chandramouli, F. S. Mok, H. Wang, and P. Y. Qian, Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa, BMC Developmental Biology, vol.11, issue.1, p.31, 2011.
DOI : 10.1002/pmic.201000199

D. Van-hoof, J. Munoz, S. R. Braam, M. W. Pinkse, R. Linding et al., Phosphorylation Dynamics during Early Differentiation of Human Embryonic Stem Cells, Cell Stem Cell, vol.5, issue.2, pp.214-226, 2009.
DOI : 10.1016/j.stem.2009.05.021

L. Liao, D. B. Mcclatchy, S. K. Park, T. Xu, B. Lu et al., Quantitative Analysis of Brain Nuclear Phosphoproteins Identifies Developmentally Regulated Phosphorylation Events, Journal of Proteome Research, vol.7, issue.11, pp.4743-4755, 2008.
DOI : 10.1021/pr8003198

S. Morandell, T. Stasyk, S. Skvortsov, S. Ascher, and L. A. Huber, Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network, PROTEOMICS, vol.36, issue.21, pp.4383-4401, 2008.
DOI : 10.1002/pmic.200800204

J. V. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar et al., Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks, Cell, vol.127, issue.3, pp.635-648, 2006.
DOI : 10.1016/j.cell.2006.09.026

B. S. Skalhegg and K. Tasken, Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA, Front. Biosci, vol.5, pp.678-693, 2000.

J. A. Vizcaino, R. G. Cote, A. Csordas, J. A. Dianes, A. Fabregat et al., The Proteomics Identifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Research, vol.41, issue.D1, pp.1063-1069, 2013.
DOI : 10.1093/nar/gks1262