J. Alvar, I. D. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis worldwide and global estimates of its incidence, PLoS One, vol.7, p.35671, 2012.

J. K. Bjork and L. Sistonen, Regulation of the members of the mammalian heat shock factor family, FEBS J, vol.277, pp.4126-4139, 2010.

S. Brandau, A. Dresel, and J. Clos, High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania, Biochem J, vol.310, pp.225-232, 1995.

M. Cayla, N. Rachidi, O. Leclercq, D. Schmidt-arras, H. Rosenqvist et al., Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability, PLoS pathogens, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01109591

C. Chow, S. Cloutier, C. Dumas, M. N. Chou, and B. Papadopoulou, Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation, Cellular microbiology, vol.13, pp.1059-1077, 2011.

S. Cloutier, M. Laverdiere, M. N. Chou, N. Boilard, C. Chow et al., Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process, PloS one, vol.7, p.35085, 2012.

M. Dacher, M. A. Morales, P. Pescher, O. Leclercq, N. Rachidi et al., Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses, Molecular microbiology, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178772

J. P. Daniels, K. Gull, and B. Wickstead, Cell biology of the trypanosome genome, Microbiol Mol Biol Rev, vol.74, pp.552-569, 2010.

A. Das, M. Banday, and V. Bellofatto, RNA polymerase transcription machinery in trypanosomes, Eukaryot Cell, vol.7, pp.429-434, 2008.

M. David, I. Gabdank, M. Ben-david, A. Zilka, I. Orr et al., Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3' UTR and involves scanning of the 5' UTR, RNA, vol.16, pp.364-374, 2010.

D. Droll, I. Minia, A. Fadda, A. Singh, M. Stewart et al., Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein, PLoS Pathog, vol.9, 2013.

A. Duch, E. De-nadal, and F. Posas, The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses, FEBS letters, vol.586, pp.2925-2931, 2012.

C. Folgueira and J. M. Requena, A postgenomic view of the heat shock proteins in kinetoplastids, FEMS Microbiol Rev, vol.31, pp.359-377, 2007.

A. Hombach, G. Ommen, M. Chrobak, and J. Clos, The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages, Cellular microbiology, vol.15, pp.585-600, 2013.

A. Hombach, G. Ommen, A. Macdonald, and J. Clos, A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani, Journal of cell science, vol.127, pp.4762-4773, 2014.

C. Hombach, S. Brandau, A. Dresel, and J. Clos, A member of the ClpB family of stress proteins is expressed during heat shock in Leishmania spp, Heat Shock Proteins of Leishmania: Parasites in the Driver's Seat Hubel, vol.70, pp.107-118, 1995.

A. Hubel, S. Krobitsch, A. Horauf, and J. Clos, Leishmania major Hsp100 is required chiefly in the mammalian stage of the parasite, Mol Cell Biol, vol.17, pp.5987-5995, 1997.

H. Konishi, H. Matsuzaki, M. Tanaka, Y. Takemura, S. Kuroda et al., Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27, FEBS letters, vol.410, pp.493-498, 1997.

J. Koren, U. K. Jinwal, Y. Jin, J. O'leary, J. R. Jones et al., Facilitating Akt clearance via manipulation of Hsp70 activity and levels, The Journal of biological chemistry, vol.285, pp.2498-2505, 2010.

S. Kramer and M. Carrington, Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids, Trends Parasitol, vol.27, pp.23-30, 2011.

S. Krobitsch, S. Brandau, C. Hoyer, C. Schmetz, A. Hubel et al., Leishmania donovani heat shock protein 100. Characterization and function in amastigote stage differentiation, J Biol Chem, vol.273, pp.6488-6494, 1998.

S. Krobitsch and J. Clos, A novel role for 100 kD heat shock proteins in the parasite Leishmania donovani, Cell stress & chaperones, vol.4, pp.191-198, 1999.

T. Lahav, D. Sivam, H. Volpin, M. Ronen, P. Tsigankov et al., Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.25, pp.515-525, 2011.

M. Laplante and D. M. Sabatini, mTOR signaling at a glance, Journal of cell science, vol.122, pp.3589-3594, 2009.

M. G. Lee, The 3' untranslated region of the hsp 70 genes maintains the level of steady state mRNA in Trypanosoma brucei upon heat shock, Nucleic Acids Res, vol.26, pp.4025-4033, 1998.

C. A. Louw, M. H. Ludewig, J. Mayer, and G. L. Blatch, The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members, Parasitol Int, vol.59, pp.497-505, 2010.

L. Madeira-da-silva and S. M. Beverley, Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.11965-11970, 2010.

S. Michaeli, Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome, Future Microbiol, vol.6, pp.459-474, 2011.

M. A. Morales, O. Renaud, W. Faigle, S. L. Shorte, and G. F. Spath, Overexpression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity, Int J Parasitol, vol.37, pp.1187-1199, 2007.

M. A. Morales, R. Watanabe, M. Dacher, P. Chafey, J. Osorio-y-fortea et al., Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage, Proc Natl Acad Sci U S A, vol.107, pp.8381-8386, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00476914

M. A. Morales, R. Watanabe, C. Laurent, P. Lenormand, J. C. Rousselle et al., Phosphoproteomic analysis of Leishmania donovani pro-and amastigote stages, Proteomics, vol.8, pp.350-363, 2008.

G. Ommen, M. Chrobak, and J. Clos, The co-chaperone SGT of Leishmania donovani is essential for the parasite's viability, Cell stress & chaperones, vol.15, pp.443-455, 2010.

M. Parsons, E. A. Worthey, P. N. Ward, and J. C. Mottram, Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi, BMC Genomics, vol.6, p.127, 2005.

L. Quijada, M. Soto, C. Alonso, and J. M. Requena, Analysis of posttranscriptional regulation operating on transcription products of the tandemly linked Leishmania infantum hsp70 genes, J Biol Chem, vol.272, pp.4493-4499, 1997.

L. Quijada, M. Soto, C. Alonso, and J. M. Requena, Identification of a putative regulatory element in the 3'-untranslated region that controls expression of HSP70 in Leishmania infantum, Mol Biochem Parasitol, vol.110, pp.79-91, 2000.

N. Rachidi, J. F. Taly, E. Durieu, O. Leclercq, N. Aulner et al., Pharmacological assessment defines the Leishmania donovani casein kinase 1 as a drug target and reveals important functions in parasite viability and intracellular infection, Antimicrobial agents and chemotherapy, vol.58, 2014.

J. M. Requena, The Stressful Life of Pathogenic Leishmania Species, Stress Response in Microbiology, J.M. Requena, pp.323-346, 2012.

A. Rohl, J. Rohrberg, and J. Buchner, The chaperone Hsp90: changing partners for demanding clients, Trends in biochemical sciences, vol.38, pp.253-262, 2013.

D. Rosenzweig, D. Smith, F. Opperdoes, S. Stern, R. W. Olafson et al., Retooling Leishmania metabolism: from sand fly gut to human macrophage, FASEB J, vol.22, pp.590-602, 2008.

S. Sato, N. Fujita, and T. Tsuruo, Modulation of Akt kinase activity by binding to Hsp90, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.10832-10837, 2000.

A. Saxena, T. Lahav, N. Holland, G. Aggarwal, A. Anupama et al., Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation, Mol Biochem Parasitol, vol.152, pp.53-65, 2007.

L. D. Sibley, Invasion and intracellular survival by protozoan parasites, Immunol Rev, vol.240, pp.72-91, 2011.

J. M. Silverman, J. Clos, C. C. De'oliveira, O. Shirvani, Y. Fang et al., An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages, Journal of cell science, vol.123, pp.842-852, 2010.

P. Tsigankov, P. F. Gherardini, M. Helmer-citterich, G. F. Spath, P. J. Myler et al., Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends, Molecular & cellular proteomics : MCP, vol.13, pp.1787-1799, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01433413

P. Tsigankov, P. F. Gherardini, M. Helmer-citterich, G. F. Spath, and D. Zilberstein, Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif, J Proteome Res, vol.12, pp.3405-3412, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01433421

J. R. Van-brocklyn and J. B. Williams, The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comparative biochemistry and physiology, Biochemistry & molecular biology, vol.163, pp.26-36, 2012.

M. Wiese, Leishmania MAP kinases--familiar proteins in an unusual context, International journal for parasitology, vol.37, pp.1053-1062, 2007.

M. Wiesgigl and J. Clos, Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani, Mol Biol Cell, vol.12, pp.3307-3316, 2001.

W. L. Yau, T. Blisnick, J. F. Taly, M. Helmer-citterich, C. Schiene-fischer et al., Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability, PLoS Negl Trop Dis, vol.4, p.729, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433566

W. L. Yau, P. Pescher, A. Macdonald, S. Hem, D. Zander et al., The Leishmania donovani chaperone cyclophilin 40 is essential for intracellular infection independent of its stage-specific phosphorylation status, Mol Microbiol, vol.93, pp.80-97, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01054664

O. Zhang, F. F. Hsu, W. Xu, M. Pawlowic, and K. Zhang, Sphingosine kinase A is a pleiotropic and essential enzyme for Leishmania survival and virulence, Molecular microbiology, vol.90, pp.489-501, 2013.

D. Zilberstein, physiological and biochemical aspects of Leishmania development, 2008.

D. Zilberstein and M. Shapira, The role of pH and temperature in the development of Leishmania parasites, Annu Rev Microbiol, vol.48, pp.449-470, 1994.

A. Zilka, S. Garlapati, E. Dahan, V. Yaolsky, and M. Shapira, Developmental regulation of heat shock protein 83 in Leishmania. 3' processing and mRNA stability control transcript abundance, and translation id directed by a determinant in the 3'-untranslated region, J Biol Chem, vol.276, pp.47922-47929, 2001.