L. Intracellular, 0410: signal peptide/mannose-6-phosphate receptor binding domain/growth factor receptor domain LmjF.24.1390: Zn finger/EF hand domain LmjF

E. Alnemri, D. Livingston, D. Nicholson, G. Salvesen, N. Thornberry et al., Human ICE/CED-3 Protease Nomenclature, Cell, vol.87, issue.2, p.171, 1996.
DOI : 10.1016/S0092-8674(00)81334-3

URL : http://doi.org/10.1016/s0092-8674(00)81334-3

M. Leist and M. Jäättelä, Four deaths and a funeral: from caspases to alternative mechanisms, Nature Reviews Molecular Cell Biology, vol.926, issue.8, pp.589-598, 2001.
DOI : 10.1038/35085008

URL : http://nbn-resolving.de/urn:nbn:de:bsz:352-201607

S. Kumar, Caspase function in programmed cell death, Cell Death and Differentiation, vol.13, issue.1, pp.32-43, 2007.
DOI : 10.1038/sj.cdd.4402060

J. Timmer and G. Salvesen, Caspase substrates, Cell Death and Differentiation, vol.27, issue.1, pp.66-72, 2007.
DOI : 10.1038/sj.cdd.4402059

M. Lamkanfi, N. Festjens, W. Declercq, V. Berghe, T. Vandenabeele et al., Caspases in cell survival, proliferation and differentiation, Cell Death and Differentiation, vol.140, issue.1, pp.44-55, 2007.
DOI : 10.1038/sj.cdd.4402047

E. Baehrecke, Autophagic programmed cell death in Drosophila, Cell Death and Differentiation, vol.10, issue.9, pp.940-945, 2003.
DOI : 10.1038/sj.cdd.4401280

M. Djavaheri-mergny, M. Maiuri, and G. Kroemer, Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1, Oncogene, vol.11, issue.12, pp.1717-1719, 2010.
DOI : 10.1038/ncb1482

H. Jeong, H. Choi, E. Lee, J. Kim, K. Jeon et al., Involvement of caspase-9 in autophagy-mediated cell survival pathway, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.1, pp.80-90, 2011.
DOI : 10.1016/j.bbamcr.2010.09.016

N. Mohseni, S. Mcmillan, R. Chaudhary, J. Mok, and B. Reed, Autophagy promotes caspase-dependent cell death during Drosophila development, Autophagy, vol.5, issue.3, pp.329-338, 2009.
DOI : 10.4161/auto.5.3.7444

E. Wirawan, V. Walle, L. Kersse, K. Cornelis, S. Claerhout et al., Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria, Cell Death and Disease, vol.251, issue.1, p.18, 2010.
DOI : 10.1038/cddis.2009.16

A. Uren, K. O-'rourke, L. Aravind, M. Pisabarro, S. Seshagiri et al., Identification of Paracaspases and Metacaspases Two Ancient Families of Caspase-like Proteins, One of which Plays a Key Role in MALT Lymphoma, Molecular Cell, vol.6, issue.4, pp.961-967, 2000.
DOI : 10.1016/S1097-2765(00)00094-0

D. Vercammen, W. Declercq, P. Vandenabeele, and F. Van-breusegem, Are metacaspases caspases?, The Journal of Cell Biology, vol.107, issue.3, pp.375-380, 2007.
DOI : 10.1104/pp.104.046367

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064784

L. Tsiatsiani, F. Van-breusegem, P. Gallois, A. Zavialov, E. Lam et al., Metacaspases, Cell Death and Differentiation, vol.15, issue.8, pp.1279-1288, 2011.
DOI : 10.1111/j.1474-9726.2010.00587.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172103

L. Aravind, V. Dixit, and E. Koonin, The domains of death: evolution of the apoptosis machinery, Trends in Biochemical Sciences, vol.24, issue.2, pp.47-53, 1999.
DOI : 10.1016/S0968-0004(98)01341-3

P. Bozhkov, L. Filonova, and M. Suarez, Programmed Cell Death in Plant Embryogenesis, Curr Top Dev Biol, vol.67, pp.135-179, 2005.
DOI : 10.1016/S0070-2153(05)67004-4

I. González, C. Desponds, C. Schaff, J. Mottram, and N. Fasel, Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity, International Journal for Parasitology, vol.37, issue.2, pp.161-172, 2007.
DOI : 10.1016/j.ijpara.2006.10.004

F. Madeo, E. Herker, C. Maldener, S. Wissing, S. Lächelt et al., A Caspase-Related Protease Regulates Apoptosis in Yeast, Molecular Cell, vol.9, issue.4, pp.911-917, 2002.
DOI : 10.1016/S1097-2765(02)00501-4

C. Biswas, X. Zuo, S. Chen, S. Schibeci, J. Forwood et al., Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects, Fungal Genetics and Biology, vol.67, pp.71-81, 2014.
DOI : 10.1016/j.fgb.2014.04.003

S. Hill, X. Hao, B. Liu, and T. Nyström, Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae, Science, vol.344, issue.6190, pp.1389-1392, 2014.
DOI : 10.1126/science.1252634

D. Richie, M. Miley, R. Bhabhra, G. Robson, J. Rhodes et al., metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress, Molecular Microbiology, vol.62, issue.Suppl. 1, pp.591-604, 2007.
DOI : 10.1111/j.1365-2958.2006.05534.x

K. Bidle and S. Bender, Iron Starvation and Culture Age Activate Metacaspases and Programmed Cell Death in the Marine Diatom Thalassiosira pseudonana, Eukaryotic Cell, vol.7, issue.2, pp.223-236, 2008.
DOI : 10.1128/EC.00296-07

K. Thamatrakoln, O. Korenovska, A. Niheu, and K. Bidle, Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana, Environmental Microbiology, vol.98, issue.1, pp.67-81, 2012.
DOI : 10.1111/j.1462-2920.2011.02468.x

N. Coll, A. Smidler, M. Puigvert, C. Popa, M. Valls et al., The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy, Cell Death and Differentiation, vol.25, issue.9, pp.1399-1408, 2014.
DOI : 10.1038/cdd.2014.50

N. Coll, D. Vercammen, A. Smidler, C. Clover, F. Van-breusegem et al., Arabidopsis Type I Metacaspases Control Cell Death, Science, vol.330, issue.6009, pp.1393-1397, 2010.
DOI : 10.1126/science.1194980

A. Ambit, N. Fasel, G. Coombs, and J. Mottram, An essential role for the Leishmania major metacaspase in cell cycle progression, Cell Death and Differentiation, vol.93, issue.1, pp.113-122, 2008.
DOI : 10.1101/gad.1063703

M. Helms, A. Ambit, P. Appleton, L. Tetley, G. Coombs et al., Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes, Journal of Cell Science, vol.119, issue.6, pp.1105-1117, 2006.
DOI : 10.1242/jcs.02809

URL : http://strathprints.strath.ac.uk/10508/1/313816.pdf

P. Bates, Leishmania sand fly interaction: progress and challenges, Current Opinion in Microbiology, vol.11, issue.4, pp.340-344, 2008.
DOI : 10.1016/j.mib.2008.06.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675783

R. Da-silva and D. Sacks, Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation, Infect Immun, vol.55, pp.2802-2806, 1987.

M. Das, S. Mukherjee, and C. Shaha, Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes, J Cell Sci, vol.114, pp.2461-2469, 2001.

R. Das, A. Roy, N. Dutta, and H. Majumder, Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani, Apoptosis, vol.64, issue.7, pp.867-882, 2008.
DOI : 10.1007/s10495-008-0224-7

P. Holzmuller, D. Sereno, M. Cavaleyra, I. Mangot, S. Daulouede et al., Nitric Oxide-Mediated Proteasome-Dependent Oligonucleosomal DNA Fragmentation in Leishmania amazonensis Amastigotes, Infection and Immunity, vol.70, issue.7, pp.3727-3735, 2002.
DOI : 10.1128/IAI.70.7.3727-3735.2002

N. Lee, S. Bertholet, A. Debrabant, J. Muller, R. Duncan et al., Programmed cell death in the unicellular protozoan parasite Leishmania, Cell Death and Differentiation, vol.9, issue.1, pp.53-64, 2002.
DOI : 10.1038/sj.cdd.4400952

M. Moreira, D. Portillo, H. Milder, R. Balanco, J. Barcinski et al., Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania Leishmania amazonensis, Journal of Cellular Physiology, vol.167, issue.2, pp.305-313, 1996.
DOI : 10.1002/(SICI)1097-4652(199605)167:2<305::AID-JCP15>3.3.CO;2-P

S. Mukherjee, M. Das, G. Sudhandiran, and C. Shaha, Increase in Cytosolic Ca2+ Levels through the Activation of Non-selective Cation Channels Induced by Oxidative Stress Causes Mitochondrial Depolarization Leading to Apoptosis-like Death in Leishmania donovaniPromastigotes, Journal of Biological Chemistry, vol.277, issue.27, pp.24717-24727, 2002.
DOI : 10.1074/jbc.M201961200

C. Paris, P. Loiseau, C. Bories, and J. Bréard, Miltefosine Induces Apoptosis-Like Death in Leishmania donovani Promastigotes, Antimicrobial Agents and Chemotherapy, vol.48, issue.3, pp.852-859, 2004.
DOI : 10.1128/AAC.48.3.852-859.2004

E. Rico, J. Alzate, A. Arias, D. Moreno, J. Clos et al., Leishmania infantum expresses a mitochondrial nuclease homologous to EndoG that migrates to the nucleus in response to an apoptotic stimulus, Molecular and Biochemical Parasitology, vol.163, issue.1, pp.28-38, 2009.
DOI : 10.1016/j.molbiopara.2008.09.007

H. Zangger, J. Mottram, and N. Fasel, Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis?, Cell Death and Differentiation, vol.9, issue.10, pp.1126-1139, 2002.
DOI : 10.1038/sj.cdd.4401071

W. Proto, G. Coombs, and J. Mottram, Cell death in parasitic protozoa: regulated or incidental?, Nature Reviews Microbiology, vol.581, issue.1, pp.58-66, 2013.
DOI : 10.1038/nrmicro2929

E. Castanys-muñoz, E. Brown, G. Coombs, and J. Mottram, Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells, Cell Death and Disease, vol.61, issue.9, p.385, 2012.
DOI : 10.1038/cddis.2012.113

H. Zalila, I. González, A. El-fadili, M. Delgado, C. Desponds et al., Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in Leishmania major, Molecular Microbiology, vol.9, issue.1, pp.222-239, 2011.
DOI : 10.1111/j.1365-2958.2010.07443.x

A. Jiménez-ruiz, J. Alzate, E. Macleod, C. Lüder, N. Fasel et al., Apoptotic markers in protozoan parasites, Parasites & Vectors, vol.3, issue.1, p.104, 2010.
DOI : 10.1186/1756-3305-3-104

A. Foucher, N. Rachidi, S. Gharbi, T. Blisnick, P. Bastin et al., Apoptotic Marker Expression in the Absence of Cell Death in Staurosporine-Treated Leishmania donovani, Antimicrobial Agents and Chemotherapy, vol.57, issue.3, pp.1252-1261, 2013.
DOI : 10.1128/AAC.01983-12

URL : https://hal.archives-ouvertes.fr/pasteur-01433417

T. Koide, M. Nose, Y. Ogihara, Y. Yabu, and N. Ohta, Leishmanicidal Effect of Curcumin in Vitro, Biological & Pharmaceutical Bulletin, vol.25, issue.1, pp.131-133, 2002.
DOI : 10.1248/bpb.25.131

G. Mariño, M. Niso-santano, E. Baehrecke, and G. Kroemer, Self-consumption: the interplay of autophagy and apoptosis, Nature Reviews Molecular Cell Biology, vol.8, issue.2, pp.81-94, 2014.
DOI : 10.1038/nrm3735

S. Besteiro, R. Williams, L. Morrison, G. Coombs, and J. Mottram, Endosome Sorting and Autophagy Are Essential for Differentiation and Virulence of Leishmania major, Journal of Biological Chemistry, vol.281, issue.16, pp.11384-11396, 2006.
DOI : 10.1074/jbc.M512307200

A. Petiot, E. Ogier-denis, E. Blommaart, A. Meijer, and P. Codogno, Distinct Classes of Phosphatidylinositol 3'-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells, Journal of Biological Chemistry, vol.275, issue.2, pp.992-998, 2000.
DOI : 10.1074/jbc.275.2.992

E. Minina, L. Filonova, K. Fukada, E. Savenkov, V. Gogvadze et al., Autophagy and metacaspase determine the mode of cell death in plants, The Journal of Cell Biology, vol.10, issue.6, pp.917-927, 2013.
DOI : 10.1101/gad.1984410

J. Rual, K. Venkatesan, T. Hao, T. Hirozane-kishikawa, A. Dricot et al., Towards a proteome-scale map of the human protein???protein interaction network, Nature, vol.23, issue.7062, pp.1173-1178, 2005.
DOI : 10.1126/science.1090100

M. Macias, S. Wiesner, and M. Sudol, WW and SH3 domains, two different scaffolds to recognize proline-rich ligands, FEBS Letters, vol.14, issue.1, pp.30-37, 2002.
DOI : 10.1016/S0014-5793(01)03290-2

M. Sudol and T. Hunter, NeW Wrinkles for an Old Domain, Cell, vol.103, issue.7, pp.1001-1004, 2000.
DOI : 10.1016/S0092-8674(00)00203-8

M. Carreras and J. Poderoso, Mitochondrial nitric oxide in the signaling of cell integrated responses, AJP: Cell Physiology, vol.292, issue.5, pp.1569-1580, 2007.
DOI : 10.1152/ajpcell.00248.2006

M. Morales, P. Pescher, and G. Späth, Leishmania major MPK7 Protein Kinase Activity Inhibits Intracellular Growth of the Pathogenic Amastigote Stage, Eukaryotic Cell, vol.9, issue.1, pp.22-30, 2010.
DOI : 10.1128/EC.00196-09

URL : https://hal.archives-ouvertes.fr/pasteur-01433564

C. Widmann, S. Gibson, M. Jarpe, and G. Johnson, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human, Physiol Rev, vol.79, pp.143-180, 1999.

B. Perrin and H. A. Calpain, Calpain, The International Journal of Biochemistry & Cell Biology, vol.34, issue.7, pp.722-725, 2002.
DOI : 10.1016/S1357-2725(02)00009-2

D. Arnoult, K. Akarid, A. Grodet, P. Petit, J. Estaquier et al., On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization, Cell Death and Differentiation, vol.9, issue.1, pp.65-81, 2002.
DOI : 10.1038/sj.cdd.4400951

K. Bidle, The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton, Annual Review of Marine Science, vol.7, issue.1, pp.341-375, 2015.
DOI : 10.1146/annurev-marine-010213-135014

M. Stratford, Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae, Spec No), pp.441-445, 1989.

B. Miki, N. Poon, A. James, and V. Seligy, Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae, J Bacteriol, vol.150, pp.878-889, 1982.

Q. Song and A. Kumar, An Overview of Autophagy and Yeast Pseudohyphal Growth: Integration of Signaling Pathways during Nitrogen Stress, Cells, vol.1, issue.4, pp.263-283, 2012.
DOI : 10.3390/cells1030263

J. Ma, J. R. Jia, X. Dobry, C. Wang, L. Reggiori et al., An Interrelationship Between Autophagy and Filamentous Growth in Budding Yeast, Genetics, vol.177, issue.1, pp.205-214, 2007.
DOI : 10.1534/genetics.107.076596

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013727

E. Tetaud, I. Lecuix, T. Sheldrake, T. Baltz, and A. Fairlamb, A new expression vector for Crithidia fasciculata and Leishmania, Molecular and Biochemical Parasitology, vol.120, issue.2, pp.195-204, 2002.
DOI : 10.1016/S0166-6851(02)00002-6

M. Morales, O. Renaud, W. Faigle, S. Shorte, and G. Späth, Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity, International Journal for Parasitology, vol.37, issue.11
DOI : 10.1016/j.ijpara.2007.03.006

N. Lee, S. Gannavaram, A. Selvapandiyan, and A. Debrabant, Characterization of Metacaspases with Trypsin-Like Activity and Their Putative Role in Programmed Cell Death in the Protozoan Parasite Leishmania, Eukaryotic Cell, vol.6, issue.10, pp.1745-1757, 2007.
DOI : 10.1128/EC.00123-07