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The second messenger cyclic diguanylate (c-di-GMP) controls di-
verse cellular processes among Bacteria. Diguanylate cyclases
(DGCs) synthesize c-di-GMP while it is degraded by c-di-GMP-
specific phosphodiesterases (PDEs). Nearly 80% of these PDEs are
predicted to depend on the catalytic function of EAL domains,
which hydrolyse a single phosphodiester group in c-di-GMP to
produce 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). However,
to degrade pGpG and prevent its accumulation, bacterial cells
require an additional nuclease, the identity of which remains
unknown. Here we identify oligoribonuclease (Orn) - a 3ʹ�5ʹ
exonuclease highly conserved among Actinobacteria, Beta-, Delta-
and Gammaproteobacteria - as an enzyme responsible for pGpG
degradation. We found that a Pseudomonas aeruginosa Δorn
mutant had high intracellular c-di-GMP levels, causing this strain
to overexpress extracellular polymers and overproduce biofilm.
Although recombinant Orn degraded small RNAs in vitro, this
enzyme had a proclivity for degrading RNA oligomers comprised of
2 to 5 nucleotides ("nanoRNAs"), including pGpG. Corresponding
with this activity, Δorn cells possessed highly elevated pGpG lev-
els. We found that pGpG inhibited the activity of EAL-dependent
PDEs in cell lysates. This inhibition could be alleviated by Orn.
These data suggest that elevated levels of pGpG might exert
product inhibition on PDEs in vivo, thereby increasing intracellular
c-di-GMP. We propose that Orn provides homeostatic control of
intracellular pGpG and that this activity may be fundamental to
c-di-GMP signal transduction.

Pseudomonas aeruginosa | biofilm | cyclic diguanylate | EAL domain

Significance statement
Many bacteria possess enzymes that synthesize and de-

grade the intracellular second messenger cyclic diguanylate (c-
di-GMP). Bacteria use this molecule to relay environmental
signals into physiological responses that control motility, viru-
lence and biofilm formation. There are two pathways for en-
zymatic c-di-GMP degradation. One of these pathways involves
the production of an intermediate molecule called pGpG. While
many enzymes responsible for c-di-GMP degradation have been
characterized, microbiologists have long sought those responsible
for pGpG degradation. Here we identify that oligoribonuclease
(Orn) mediates pGpG degradation, and show that Orn is im-
portant for c-di-GMP signalling in the human pathogen Pseu-
domonas aeruginosa. This discovery reveals that “nanoRNAses,”
which have been considered housekeeping proteins crucial for
mRNA turnover, also have a key role in c-di-GMP signalling.

Introduction
Enzymes that are predicted to “make and break” c-di-GMP have
been identified in nearly every known bacterial phylum (1). These

enzymes are found in many species in vast numbers and are
associated with diverse cellular processes. In many bacteria, low
levels of intracellular c-di-GMP upregulate motility and viru-
lence factor expression, whereas high levels promote extracellular
polysaccharide (EPS) production, biofilm development and cell
cycle progression (1-4).

C-di-GMP is enzymatically synthesized by proteins harbour-
ing GGDEF domains and degraded by EAL and HD-GYP
domain-containing proteins (5). EAL domains catalyse the asym-
metric hydrolysis of c-di-GMP to yield the linear dinucleotide 5ʹ-
phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG) (6). By contrast, HD-
GYP domains degrade c-di-GMP to GMP (7-9). Degradation
of c-di-GMP by an EAL-dependent pathway thus requires a
second phosphodiesterase (PDE) to eliminate pGpG and recycle
this dinucleotide into the cellular guanosine pool. Although the
activity of this second enzyme was predicted to be an important
part of c-di-GMP degradation more than 25 years ago (10),
the identities of the proteins involved in degrading pGpG have
remained enigmatic.

Significance

Many bacteria possess enzymes that synthesize and degrade
the intracellular second messenger cyclic diguanylate (c-di-
GMP). Bacteria use this molecule to relay environmental sig-
nals into physiological responses that control motility, viru-
lence and biofilm formation. There are two pathways for enzy-
matic c-di-GMP degradation. One of these pathways involves
the production of an intermediate molecule called pGpG.
While many enzymes responsible for c-di-GMP degradation
have been characterized, microbiologists have long sought
those responsible for pGpG degradation. Here we identify
that oligoribonuclease (Orn) mediates pGpG degradation, and
show that Orn is important for c-di-GMP signalling in the
human pathogen Pseudomonas aeruginosa. This discovery re-
veals that "nanoRNAses," which have been considered house-
keeping proteins crucial for mRNA turnover, also have a key
role in c-di-GMP signalling.
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Fig. 1. Loss of orn increases P. aeruginosa surface attachment and biofilm development. (A) Biofilm formation in microtiter plates. Values represent the
means and standard deviations of 3 biological replicates.*P ≤ 0.05 and ***P ≤ 0.001 versus wild type (wt) with Student’s t-test. (B) Biofilm development in
flow cells. Each square on the grid is 20 × 20 μm. VC denotes the vector control.

Fig. 2. Loss of orn increases intracellular c-di-GMP and pGpG. Intracellular levels of guanosine nucleotides were measured by LC-MS/MS. (A) c-di-GMP. (B)
pGpG. (C) GMP. Values represent the means and standard deviations of 3 biological replicates. *P ≤ 0.05, **P ≤ 0.005 and ***P ≤ 0.001 versus wild type (wt)
+ vector control (VC) with Student’s t-test.

RNAs that are 2 to 5 nucleotides in length have been termed
nanoRNAs (11). These short oligonucleotides, including pGpG,
are degraded by “nanoRNAses” (11). One of the most likely
candidates for pGpG degradation in vivo is oligoribonuclease
(orn) (1). Escherichia coli Orn and its orthologues are required
to complete the degradation of mRNA to mononucleotides. Al-
though some bacteria possess multiple redundant nanoRNAses
(12), Orn is essential for the viability of other species, including E.
coli (11, 13, 14). Thus, the role of Orn in bacterial physiology has
been investigated primarily by using systems for the conditional
expression or depletion of this enzyme.

Pseudomonas aeruginosa is a formidable opportunistic
pathogen that has served as a model organism for studying
biofilm formation. This developmental process is regulated by
c-di-GMP (15). Recently, a method was devised to trigger the
post-translational degradation of Orn in P. aeruginosa. Work with

this system demonstrated that nanoRNAs accumulate in vivo
and that these oligonucleotides may prime RNA transcription,
shifting transcriptional start sites and leading to global changes
in promoter-specific gene expression (16). Nevertheless, because
Orn depletion did not seem to cause expression changes in genes
known to belong to a c-di-GMP regulon, an additional role for
Orn in c-di-GMP signalling was not evident.

Here we report the observation that P. aeruginosa PAO1 with
a complete and precisely engineered deletion of orn is viable,
and surprisingly, exhibits elevated levels of c-di-GMP. This finding
provided a new opportunity to investigate the function of Orn in
bacterial c-di-GMP signal transduction. We present biochemical
and genetic evidence that Orn degrades pGpG in vitro as well as
in vivo. We also show that the addition of pGpG to cell lysates
inhibits PDE activity, which can be alleviated through addition of
purified Orn. Collectively, these data suggest that Orn has a key
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Fig. 3. The P. aeruginosa Δornmutant overexpresses
genes for extracellular polymers. RT-PCR was used
to quantify relative transcript levels for (A) pelA, (B)
pslA, and (C) cdrA. Values represent the means and
standard deviations of 3 biological replicates each
performed in 3 technical replicates, as normalized
to the ampR gene in RNA from wild type + vector
control (VC) samples. Relative expression levels were
calculated using the comparative 2-ΔΔCT method (30).

Fig. 4. Orn preferentially degrades nanoRNAs and purine dinucleotides in vitro. (A) Degradation of the 24-mer 5ʹ-33P-CACACACACACACACACACACACA-3ʹ.
The red arrow indicates the preferential elimination of nanoRNAs. M denotes the MilleniumTM RNA marker, H denotes acid hydrolysis, and “-“ denotes the
a control with no enzyme. The region corresponding (B) Degradation and semi-quantitation of 5ʹ-Cy5-AAAAA-3ʹ, (C) 5ʹ-Cy5-GGAAA-3ʹ, (D) 5ʹ-Cy5-UUAAA-3ʹ,
and (E) 5ʹ-Cy5-CCAAA-3ʹ. Each semi-quantitation is one representative of three technical replicates. (F) Degradation of pGpG and production of GMP by 100
ng Orn in vitro as assessed by LC-MS/MS. Each data point is the mean and standard deviation of 3 replicates and is expressed as the percentage yield of GMP,
or the amount of pGpG or c-di-GMP remaining.

role in P. aeruginosa c-di-GMP signal transduction. Finally, we
demonstrate that the E. coli orthologue of Orn alleviates pGpG
accumulation and restores wild type phenotypes to a P. aeruginosa
Δorn mutant, suggesting that orthologues of Orn may be a central
feature of c-di-GMP signaling in other species of bacteria.

Results

Loss of orn enhances biofilm formation by P. aeruginosa PAO1.
Transposon mutagenesis indicates that P. aeruginosa can with-
stand mutational inactivation of orn (PA4951) (17, 18). Thus, to
investigate the function of oligoribonuclease, we constructed an
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Fig. 5. pGpG inhibits the activity of EAL-dependent
PDEs in lysates of cells overexpressing PA2133. C-di-
GMP was measured by LC-MS/MS. (A) The addition
of pGpG (20 µM) inhibited c-di-GMP degradation,
and this was alleviated by adding 100 ng of purified
Orn. (B) pGpG inhibited c-di-GMP degradation in a
concentration-dependent fashion, and this inhibition
was reduced when c-di-GMP concentrations were in-
creased 10-fold. A representative biological replicate
is shown and each data point represents themean and
standard error for 3 technical replicates.

Fig. 6. Guanosine biochemistry fundamental to c-di-GMP signal transduc-
tion in P. aeruginosa. Solid lines indicate reactions mediated by the named
types of enzymes. Gmk and Ndk denote guanylate kinase and nucleoside
diphosphate kinase, respectively. The dashed line indicates a reaction that
may be mediated by another unknown cellular enzyme.

in-frame deletion of orn in P. aeruginosa PAO1. A prominent
phenotype of Δorn mutant cells grown in shaken cultures was
their tendency to clump and attach to the sides of the culture
tubes (Fig. S1). This observation suggested that inactivation of
orn may increase surface attachment and biofilm growth. To test
this, we carried out microtiter dish biofilm formation assays. The
Δorn mutant accumulated significantly increased biofilm biomass
in microtiter plate wells relative to the ancestral PAO1 strain
(Fig. 1A). We noted that the orn-G11::ISlacZ/hah transposon
mutant, which was obtained from the P. aeruginosa PAO1 two-
allele transposon mutant library (17), produced similar results
(Fig. 1A). To investigate these findings further, we grew PAO1 and
the Δorn mutant expressing green fluorescent protein (GFP) in
continuous flow chambers. We saw that theΔorn mutant attached
to the interior of flow cells more rapidly and produced mature
biofilms with much greater thickness than the parental PAO1
strain (Fig. 1B). Introducing a wild type copy of orn on a plasmid
complemented all of these phenotypes (Fig. 1 and Fig. S1). We

conclude from these collective data that Orn suppresses P. aerug-
inosa aggregation, surface attachment and biofilm formation.

A Δorn mutant strain has elevated intracellular c-di-GMP
and overexpresses extracellular polymers. Because Orn is pre-
dicted to participate in a two-step pathway for the degradation
of c-di-GMP, we postulated that the increased biofilm growth of
the Δorn mutant strain might result from elevated intracellular
c-di-GMP concentrations. To test this hypothesis, we extracted
nucleotide pools from wild type and Δorn cells and quantified c-
di-GMP using liquid chromatography tandem mass-spectrometry
(LC-MS/MS). We observed that cultures of Δorn cells produced
∼2-fold more c-di-GMP than the ancestral PAO1 strain (Fig. 2A).
Wild type levels of c-di-GMP in the Δorn strain were restored
by genetic complementation (Fig. 2A). To further corroborate
the involvement of c-di-GMP in regulating the biofilm associated
traits of theΔorn mutant, a plasmid encoding an EAL-dependent
PDE (PA2133) was transformed into this strain. This eliminated
c-di-GMP-related phenotypes of the Δorn mutant strain (Fig. 1A
and Fig. S1), and reduced intracellular c-di-GMP (Fig. 2A). These
data indicate that inactivation of orn increases intracellular c-di-
GMP and that this is associated with increased biofilm formation.

In P. aeruginosa, c-di-GMP regulates the expression of the pel,
psl and cdr operons (15, 19, 20), which encode genes for extracel-
lular polysaccharides (Pel and Psl) and a biofilm matrix protein
(CdrA). Since Δorn cells display elevated intracellular c-di-GMP,
we hypothesized that loss of orn should activate the transcription
of pel, psl and cdr genes. To test this, we began by engineering
a Δorn mutant that had additional deletions in pelF and pslD. A
ΔornΔpelFΔpslD triple mutant neither clumped in shaken culture
tubes (Fig. S1) nor formed biofilms in microtiter dishes (Fig. S2).
Levels of pel, psl and cdr transcripts were also quantified using
reverse-transcriptase polymerase chain reaction (RT-PCR). This
revealed 2.1-, 1.7- and 2.6-fold increased expression for pelA, pslA
and cdrA in the Δorn background (Fig. 3). This transcriptional
upregulation could be reversed by genetic complementation or
by overexpressing PA2133 from a plasmid (Fig. 3). We conclude
from these data that loss of orn transcriptionally upregulates
a hallmark c-di-GMP regulon and that this contributes to the
increased production of extracellular polymers in the Δorn strain.

Inactivation of orn increases intracellular pGpG. Orn is ex-
pected to function in cellular nucleotide recycling. The putative
biochemical function of Orn and the disruption of c-di-GMP
signalling in the Δorn strain led us to hypothesize that the in-
activation of orn might dramatically alter intracellular pools of
pGpG and GMP. To test this, we extracted nucleotide pools from
wild type and Δorn strains and measured pGpG and GMP using
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LC-MS/MS. Loss of orn resulted in a 5-fold decrease in cellular
GMP (Fig. 2). Although pGpG could not be detected in wild
type cells, there was a massive increase in this dinucleotide in the
Δorn strain (Fig. 2). In fact, these data suggest that loss of orn
resulted in intracellular pGpG concentrations that far exceeded
those of GMP (Fig. 2). We estimated that wild type P. aeruginosa
had an average intracellular concentration of 2.7 mM GMP and
undetectable

levels of pGpG, whereas the Δorn strain had approximately
0.5 mM GMP and 1.8 mM pGpG (see SI Materials and Methods).
These data suggest that Orn has a key role in degrading pGpG in
vivo.

Orn efficiently degrades pGpG in vitro. The biochemical ac-
tivity of Orn was first characterized for E. coli nearly 40 years ago
(21, 22). These studies indicated that Orn is a manganese (Mn2+)-
dependent 3ʹ→5ʹ exonuclease that produces 5ʹ-phosphorylated
ribonucleotide monomers from polyribonucleotides (21). The
rate at which E. coli Orn degraded RNA oligomers was inversely
proportional to the chain length of the substrate, and moreover,
the presence of guanine at the 5ʹ or 3ʹ end seemed to be strongly
inhibitory to enzyme activity (22). Previous work also suggested
that Orn has relatively low activity against a GpG substrate (22).

P. aeruginosa Orn has high identity (67%) with the E. coli
protein. Because our data indicate that Orn has a crucial role in
degrading pGpG, we sought to reassess the biochemical function-
ality of Orn. To do this we produced and purified recombinant
P. aeruginosa Orn. Subsequently, the exonuclease activity of this
enzyme was assessed by tracking the time-dependent degradation
of 33P- or Cy5-labeled RNA oligomers. The products of these re-
actions were then electrophoresed in 40% polyacrylamide (PAA)
gels, imaged and quantified.

In the presence of Mn2+, Orn degraded a 33P-labelled RNA
24-mer (5ʹ-CACACACACACACACACACACACA-3ʹ) (Fig.
4A). Similar to the work with E. coli, P. aeruginosa Orn showed a
notable predilection for degrading nanoRNAs. This was evident
from the preferential elimination of RNA molecules ranging
in size from 2 to 5 ribonucleotides during degradation of the
24-mer (Fig. 4A). Next, the preference of P. aeruginosa Orn
for specific nanoRNAs was evaluated. Because dinucleotides
and trinucleotides can be difficult to synthesize, and since
guanosine homopolymers can form stable quadruplexes that
may interfere with enzyme assays, the activity of Orn against
RNA homo- and heteropentamers was investigated. To begin, we
examined the kinetics of 5ʹ-Cy5-AAAAA-3ʹ, 5ʹ -Cy5-UUAAA-
3ʹ, 5ʹ-Cy5-GGAAA-3ʹ, and 5ʹ-Cy5-CCAAA-3ʹ degradation.
Although Orn degraded all of these pentamers, this enzyme
displayed a preference for purine substrates and bias against
pyrimidines (Fig. 4B – 4E). 5ʹ-Cy5-CCAAA-3ʹ was degraded the
least efficiently of all these substrates (Fig. 4E). Corresponding
with this observation, a 5ʹ-Cy5-CCCCC-3ʹ homopentamer was
degraded much less efficiently than the RNA heteropentamer
containing purines at the 3ʹ end (Fig. S3). The stepwise
degradation of pentamers into intermediates also informed
the relative proclivity of Orn for degrading RNA homodimers.
Orn degraded 5ʹ-Cy5-AA-3ʹ most rapidly, followed by 5ʹ-Cy5-
GG-3ʹ and 5ʹ-Cy5-UU-3ʹ. The degradation of 5ʹ-Cy5-CC-3ʹ was
inefficient and the production of 5ʹ-Cy5-C-3ʹ monomers was
barely detectable in these assays (Fig. 4E and Fig. S3).

Previously, calcium-sensitivity has been used to distinguish
between EAL-dependent PDEs and the putative enzymes for
pGpG degradation. Specifically, EAL-dependent PDEs were
found to be inhibited by 1 mM Ca2+, whereas the putative
PDEs for pGpG degradation were insensitive to this metal cation
(10). We noted that the ribonuclease activity of Orn was Ca2+-
insensitive (Fig. S4).

Lastly, we directly assessed the ability of recombinant Orn
to degrade pGpG. Under the tested conditions, LC-MS/MS in-

dicated that 100 ng of clean, purified Orn degraded pGpG to
GMP with an initial reaction rate of at least ∼10-7 mole min-1

(Fig. 4F). Recombinant Orn exhibited no activity against c-di-
GMP (Fig. 4F). Overall, we conclude from these data that Orn
has a preference for purine rich nanoRNA substrates and that
this enzyme can readily degrade pGpG in vitro.

pGpG inhibits c-di-GMP degradation in lysates of cells lack-
ing Orn. The build-up of an enzymatic end product frequently
leads to negative feedback that inhibits the enzyme that produced
it. This led us to hypothesize that high levels of pGpG may
inhibit c-di-GMP-specific PDEs. This is a daunting problem to
test in P. aeruginosa since there are many EAL domain-containing
proteins. To initially test this hypothesis, a crude cell lysate was
prepared from a P. aeruginosa Δorn strain that had been trans-
formed with a plasmid encoding the phosphodiesterase PA2133.
Subsequently, we added c-di-GMP to aliquots of the cell lysate
and quantified its time-dependent degradation by LC-MS/MS. In
tandem with these assays, c-di-GMP degradation was measured
in aliquots of the same cell lysate except that 20 µM pGpG
was added to the reactions. We observed that the addition of
pGpG significantly inhibited the degradation of c-di-GMP (Fig.
5A). Adding purified recombinant Orn to cell lysates rapidly
eliminated pGpG from the reaction mixture (Fig. S5B), and com-
pletely alleviated inhibition (Fig. 5A). Increasing concentrations
of pGpG over a range of 2 to 20 μM increased inhibition (Fig. 5B),
and moreover, increasing the amount of c-di-GMP 10-fold re-
duced the level of inhibition (Fig. 5B). These observations suggest
that competitive inhibition may at least partially explain pGpG-
dependent inhibition of PA2133. pGpG-dependent inhibition of
c-di-GMP degradation was not uniquely characteristic of PA2133,
and we also observed product inhibition in lysates of Δorn cells
overexpressing the EAL-dependent PDE PvrR (Fig. S5A). In
sum, these collective data suggest that the elimination of pGpG
by Orn may be important for the normal catalytic functioning of
EAL-domain-dependent PDEs.

E. coli orn complements the P. aeruginosa Δorn strain and
degrades pGpG in vivo. Our data provide evidence that Orn has
an important role in P. aeruginosa c-di-GMP signal transduction.
Although orn is evolutionarily conserved among many bacteria,
testing this role in other species is challenging because Orn may
be essential for viability. This is especially pertinent to E. coli,
another paradigm species for studying c-di-GMP signal transduc-
tion (2). Given this quandary and the previous report that E.
coli Orn may not degrade diguanosine substrates efficiently in
vitro (22), we turned to interspecies genetic complementation to
look for a potential function of the E. coli orthologue of orn in
c-di-GMP signalling. Here, we postulated that E. coli orn may
complement the defects of a P. aeruginosa orn mutant, and vice
versa. To test this hypothesis, we began with an E. coli strain in
which the native promoter of orn was replaced with ptetO (11).
This strain had a considerable growth defect in the absence of the
inducer anhydrotetracycline (ATc). P. aeruginosa orn expressed
ectopically from a plasmid restored the growth of this strain in
the absence of ATc (Fig. S6A). Analogously, E. coli orn expressed
from a plasmid abolished the hyper-biofilm formation phenotype
of the P. aeruginosa Δorn strain and eliminated the accumulation
of intracellular pGpG (Fig. S6B – S6E). Altogether, these data
suggest that orthologues of Orn from other bacterial species,
including E. coli, have the capacity to function in the two-step
pathway for c-di-GMP degradation.

Discussion

C-di-GMP was originally identified as an allosteric activator of
cellulose synthase in Gluconacetobacter xylinus (10). This pioneer-
ing work recognized that c-di-GMP is degraded in two steps.
Deactivation of c-di-GMP in G. xylinus protein fractions oc-
curred when a Ca2+-sensitive phosphodiesterase, termed PDE-A,
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cleaved c-di-GMP to yield the inactive open dimer, pGpG. Sub-
sequently, a second Ca2+-insensitive phosphodiesterase, termed
PDE-B, split this product into two molecules of GMP. It
was soon discovered that EAL-domain-dependent phosphodi-
esterases mediate PDE-A activity (23); however, the enzymes
responsible for PDE-B activity have remained elusive.

Identifying the enzymes responsible for PDE-B activity has
been complicated because different bacteria possess many differ-
ent types of proteins that could have a role in pGpG degradation.
Biochemical investigations of several of these proteins have not
provided evidence supporting their role in pGpG degradation.
For example, EAL-domain proteins may cleave pGpG; however,
this activity occurs in vitro at a rate that is orders of magnitude
slower than that of c-di-GMP degradation (6, 24). HD-GYP-
domain proteins might also degrade pGpG; however, while there
is some indication that HD-GYP-domains may degrade pGpG in
vitro (9), the relevance of this activity has not been substantiated
in vivo. Finally, nanoRNAses may degrade pGpG. It has been
previously hypothesized that Orn mediates PDE-B activity (1);
however, Orn was first studied in E. coli and investigations of this
enzyme have been hampered because it is essential for E. coli cell
viability (13).

Unlike E. coli, P. aeruginosa can withstand a loss-of-function
mutation in orn. This discovery has enabled us to revisit the
hypothesis that Orn mediates PDE-B activity. Here, we have
provided multiple lines of evidence that Orn has a key role in
not only pGpG degradation, but also c-di-GMP signalling in vivo.
Thus oligoribonuclease has a role in guanosine metabolism that
is thought to be fundamental to c-di-GMP signal transduction in
P. aeruginosa (Fig. 6).

Investigations carried out in the 1970s examined the activity
of E. coli Orn against a variety of dinucleotide substrates, and
estimated that Orn had relatively low activity against GpG. Con-
trary to that work, our investigation suggests that P. aeruginosa
Orn has a relatively high capability for degrading purine dimers
such as pApA and pGpG (Fig. 4). The basis for this discrepancy
in relative reaction rates is not clear. However, our direct mea-
surements of pGpG in cells lacking Orn (Fig. 2 and Fig. S6), as
well as the ability of E. coli Orn to complement the P. aeruginosa
Δorn mutation (Fig. S6), suggest that Orn-dependent degradation
of pGpG has a biologically relevant function, especially in the
context of c-di-GMP signal transduction.

The mutational inactivation of orn is pleiotropic (16). We
reasoned that overexpressing the c-di-GMP-specific PDE PA2133
could distinguish the subset of genes and phenotypes differen-
tially regulated by c-di-GMP from other changes due to loss of
orn. Overexpression of PA2133 eliminated intracellular c-di-GMP
in theΔorn strain (Fig. 2). As expected, this also abolished biofilm
hyper-production (Fig. 1) as well as overexpression of pelA, pslA
and cdrA (Fig. 3).

Another key observation is that pGpG inhibits the degra-
dation of c-di-GMP in lysates of cells overexpressing EAL-
dependent PDEs (Fig. 5 and Fig. S5). Product inhibition is a type
of negative feedback where the product of an enzyme-catalysed
reaction binds to the enzyme and inhibits its activity. This type
of inhibition may occur through more than one mechanism. For
instance, pGpG may competitively bind the active site of EAL-
dependent PDEs, preventing c-di-GMP from binding the enzyme.
Alternatively, pGpG may bind at another site, creating allosteric
inhibition. The concentration dependence of product inhibition,
as well as the alleviation of inhibition by increasing c-di-GMP
concentration (Fig. 5B), suggest that pGpG-dependent inhibition
of EAL-domain PDEs may be at least partially competitive in
nature.

A question that arises from this work is whether or not pGpG-
dependent inhibition of EAL-dependent PDEs may contribute to
elevated intracellular c-di-GMP in the Δorn strain. Because Orn

rapidly eliminates pGpG and because c-di-GMP degradation is
difficult to detect in lysates of wild type cells, we utilized Δorn
cells overexpressing PA2133 or PvrR. We observed that under
these conditions, c-di-GMP degradation was inhibited by 2- to 20
μM pGpG in vitro. Our direct measurements suggest that Δorn
cells may have as much as 1.8 mM intracellular pGpG, which
is 90- to 900-times greater than those concentrations causing
product inhibition in cell lysates. However, these data require
careful interpretation. The optimized in vitro assay utilized 70
to 700 nM c-di-GMP, whereas we estimated that intracellular c-
di-GMP may be as high as 70 μM in the Δorn strain (see SI
Materials and Methods). Thus, c-di-GMP concentrations are 95-
to 950-times less in vitro than those expected in vivo. We would
estimate, therefore, that the stoichiometric ratios of pGpG and c-
di-GMP would be approximately similar in both in vitro assays and
in Δorn cells. Thus, we propose that pGpG-dependent inhibition
of EAL domain PDEs may be biologically relevant, increasing
intracellular c-di-GMP in the Δorn strain. We acknowledge that
not all PDE containing enzymes in the cell may be subject to
feedback inhibition by pGpG. However, if it happens for even a
few, this may tip the balance of DGC and PDE activity to favour
the build-up of c-di-GMP in the Δorn strain.

Using LC-MS/MS, pGpG could not be detected in lysates
of wild type cells, and therefore, it is not clear whether pGpG-
dependent feedback control of EAL-domain PDEs is operational
under normal circumstances. Rather, Orn seems to be responsible
for naturally low levels of pGpG in wild type P. aeruginosa cells.
Thus our data suggest that Orn provides homeostatic control of
intracellular pGpG and that this may enable the responsiveness
of c-di-GMP signaling cascades by preventing feedback inhibition
of enzymes crucial for c-di-GMP degradation.

Genetic complementation of the P. aeruginosa Δorn strain
indicates that E. coli Orn may degrade pGpG in vivo. Thus it is
tempting to speculate that orthologues of Orn may function in c-
di-GMP signal transduction in other organisms. A tBLASTn sur-
vey of 3109 completely sequenced genomes in the NCBI database
(as of October 31, 2013) identified protein sequences from 568
additional bacterial species with >50% identity to P. aeruginosa
PAO1 Orn (see Supplementary Dataset). A Bayesian analysis of
Orn sequences placed these orthologues into four phyla (Fig. S7).
This primarily includes Proteobacteria (especially β-, δ- and γ-
Proteobacteria) and Actinobacteria, but also single species rep-
resenting Gemmatimonadetes (Gemmatimonas aurantiaca) and
Fibrobacteres (Fibrobacter succinogenes). Orn may have a crucial
role in completing the degradation of RNA (13), and thus it is
no surprise that some bacterial species on this list do not possess
EAL-domain proteins. What is more intriguing though is that
many bacterial species that possess EAL-dependent PDEs do not
have an apparent orthologue of Orn. Indeed, fifteen additional
well-sampled bacterial phyla that are thought to possess EAL-
domain proteins (1) do not have Orn. This includes members of
Alphaproteobacteria such as G. xylinus, which is the species in
which c-di-GMP was discovered. This raises the intriguing possi-
bility that there may be additional, phylogenetically distinct types
of nanoRNAses that participate in c-di-GMP signal transduction
in the place of oligoribonuclease.

Materials and Methods
Bacterial strains, plasmids and growth conditions. Bacterial strains and
plasmids are described in Table S1. Primers are listed in Table S2. Plasmid and
strain construction are described in SI Materials and Methods. P. aeruginosa
was grown at 37 °C in lysogeny broth (LB), tryptic soy broth (TSB), Vogel-
Bonner minimal medium (VBMM) or basal medium 2 (BM2), and E. coli was
grown in LB (see SI Materials and Methods for media composition). Semi-
solid medium was prepared by adding 1.0% noble agar to VBMM, and 1.5%
agar to BM2 or LB. Antibiotics were added to media as required for selection
as described in SI Materials and Methods.

Static and flow cell biofilm experiments. Crystal violet quantification
of biofilms grown in BM2 in static microtiter plates was carried out using
established protocols (25). Flow cell biofilms were grown in 1% TSB and then
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imaged using a Leica TCS SPE confocal microscope as described in SI Materials
and Methods. Z-stacks of two-dimensional confocal images were rendered in
three-dimensions using Imaris (Bitplane Inc.).

Nucleotide extractions and quantification by LC-MS/MS. Nucleotide
pools were extracted from cultures grown for∼5 h at 37°C in BM2 using ice-
cold acetonitrile/methanol/water (40/40/20% v/v) according to established
procedures (26). Protein concentrations were determined from the cell
pellets of 1 ml aliquots from these cultures using a bicinchoninic acid (BCA)
Protein Assay kit (Pierce). GMP, pGpG and c-di-GMP concentrations were
determined by LC-MS/MS using a cXMP or [13C15N]c-di-GMP internal standard
as previously described (26, 27).

RNA isolation, cDNA synthesis and RT-PCR. Approximately 1.0 × 109 cells
grown in BM2 were harvested at an OD600 = 0.5 and mixed with RNAprotect
Bacteria Reagent (Qiagen) and stored at -80 °C. Isolation of total RNA and
an assessment of its quantity and quality were carried out as previously
described by Chugani et al. (28), and this is detailed in SI Materials and
Methods. Three biological replicates were processed for each strain. First
strand synthesis was carried out using the qScript cDNA Supermix kit (Quanta
Biosciences) following the manufacturer’s protocols. Quantitative PCR mea-
surements weremadewith a CFX96 Touch™ Real-Time PCR Detection System
(BioRad) using SsoAdvanced™ Universal SYBR® Green Supermix (BioRad).

Protein production. Recombinant Orn was produced by using 0.2% L-
arabinose to induce the expression of Orn-His×6 (from pDC12) in E. coli
BL21(DE3). Cells were harvested and Orn-His×6 was purified using estab-
lished protocols for high-performance liquid chromatography (HPLC) using
a HisTrapTM HP Ni-affinity column (GE Healthcare) (see SI Materials and
Methods).

RNA degradation assays. 33P- and Cy5-labled RNA oligomers were
prepared as described in SI Materials and Methods. Exonuclease assays were
carried out using established protocols (11) and this is detailed in SI Materials
and Methods.

PDE activity assays. PDE activity assays for whole cell lysates were
performed according to the method of Kulasekara et al. (29) and this is
detailed in SI Materials and Methods.

Interspecies genetic complementation. E. coli UM341 (Table S1), in
which ptetO drives the expression of chromosomal orn, was transformed
with plasmids expressing either the E. coli or P. aeruginosa orthologues
of orn, or the appropriate vector control. Genetic complementation was
evaluated by assessing bacterial growth in the presence or absence of
anhydrotetracyline (Atc).

Phylogenetic analyses. Bacterial species surveys to identify orn ortho-
logues and the construction of gene phylogenies is described in SI Materials
and Methods.
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