A. Camilli and B. Bassler, Bacterial Small-Molecule Signaling Pathways, Science, vol.311, issue.5764, pp.1113-11161113, 2006.
DOI : 10.1126/science.1121357

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776824

C. Fuqua, M. Parsek, and E. Greenberg, Regulation of Gene Expression by Cell-to-Cell Communication: Acyl-Homoserine Lactone Quorum Sensing, Annual Review of Genetics, vol.35, issue.1, pp.439-468439, 2001.
DOI : 10.1146/annurev.genet.35.102401.090913

M. Kleerebezem, L. Quadri, O. Kuipers, and W. De-vos, Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria, Molecular Microbiology, vol.24, issue.5, pp.895-904, 1997.
DOI : 10.1046/j.1365-2958.1997.4251782.x

J. Botsford and J. Harman, Cyclic AMP in prokaryotes, Microbiol Rev, vol.56, pp.100-122, 1992.

V. Jain, M. Kumar, and D. Chatterji, ppGpp: stringent response and survival, J Microbiol, vol.44, pp.1-10, 2006.

C. Pesavento and R. Hengge, Bacterial nucleotide-based second messengers, Current Opinion in Microbiology, vol.12, issue.2, pp.170-176, 2009.
DOI : 10.1016/j.mib.2009.01.007

R. Corrigan, J. Abbott, H. Burhenne, V. Kaever, and A. Grundling, c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress, PLoS Pathogens, vol.263, issue.9, 2011.
DOI : 10.1371/journal.ppat.1002217.s001

E. Mills, I. Pultz, H. Kulasekara, and S. Miller, The bacterial second messenger c-di-GMP: mechanisms of signalling, Cellular Microbiology, vol.39, issue.8, pp.1122-1129, 2011.
DOI : 10.1111/j.1462-5822.2011.01619.x

Y. Oppenheimer-shaanan, E. Wexselblatt, J. Katzhendler, E. Yavin, and S. Ben-yehuda, c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis, EMBO reports, vol.174, issue.6, 2011.
DOI : 10.1126/science.1189801

A. Tischler and A. Camilli, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation, Molecular Microbiology, vol.39, issue.3, 2004.
DOI : 10.1111/j.1365-2958.2004.04155.x

T. Schirmer and U. Jenal, Structural and mechanistic determinants of c-di-GMP signalling, Nature Reviews Microbiology, vol.1, issue.10, pp.724-735, 1038.
DOI : 10.1038/nrmicro2203

G. Witte, S. Hartung, K. Buttner, and K. Hopfner, Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates, Molecular Cell, vol.30, issue.2, pp.167-178, 2008.
DOI : 10.1016/j.molcel.2008.02.020

Y. Luo and J. Helmann, Analysis of the role of Bacillus subtilis sigma(M) in beta-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis, Mol Microbiol, vol.83, 2012.

F. Mehne, K. Gunka, H. Eilers, C. Herzberg, and V. Kaever, Cyclic Di-AMP Homeostasis in Bacillus subtilis: BOTH LACK AND HIGH LEVEL ACCUMULATION OF THE NUCLEOTIDE ARE DETRIMENTAL FOR CELL GROWTH, Journal of Biological Chemistry, vol.288, issue.3, 2004.
DOI : 10.1074/jbc.M112.395491

J. Woodward, A. Iavarone, and D. Portnoy, c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response, Science, vol.328, issue.5986, pp.1703-1705, 2010.
DOI : 10.1126/science.1189801

S. Cowley, M. Ko, N. Pick, R. Chow, and K. Downing, The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo, Molecular Microbiology, vol.20, issue.6, 2004.
DOI : 10.1111/j.1365-2958.2004.04085.x

J. Dahl, C. Kraus, H. Boshoff, B. Doan, and K. Foley, The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice, Proceedings of the National Academy of Sciences, vol.100, issue.17, pp.10026-10031, 2003.
DOI : 10.1073/pnas.1631248100

T. Primm, S. Andersen, V. Mizrahi, D. Avarbock, and H. Rubin, The Stringent Response of Mycobacterium tuberculosis Is Required for Long-Term Survival, Journal of Bacteriology, vol.182, issue.17, pp.4889-4898, 2000.
DOI : 10.1128/JB.182.17.4889-4898.2000

S. Shuman and M. Glickman, Bacterial DNA repair by non-homologous end joining, Nature Reviews Microbiology, vol.189, issue.11, pp.852-861, 2007.
DOI : 10.1038/nrmicro1768

Y. Bai, Y. J. Zhou, X. Ding, X. Eisele, and L. , Mycobacterium tuberculosis Rv3586 (DacA) Is a Diadenylate Cyclase That Converts ATP or ADP into c-di-AMP, PLoS ONE, vol.20, issue.4, 2012.
DOI : 10.1371/journal.pone.0035206.t001

K. Sinha, M. Unciuleac, M. Glickman, and S. Shuman, AdnAB: a new DSB-resecting motor-nuclease from mycobacteria, Genes & Development, vol.23, issue.12, pp.1423-1437, 2009.
DOI : 10.1101/gad.1805709

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701575

K. Chin, W. Kuo, Y. Yu, Y. Liao, and M. Yang, Structural polymorphism of c-di-GMP bound to an EAL domain and in complex with a type II PilZ-domain protein, Acta Crystallographica Section D Biological Crystallography, vol.128, issue.10, pp.1380-1392, 1107.
DOI : 10.1107/S0907444912030594/en5501sup1.pdf

F. Rao, R. See, D. Zhang, D. Toh, and Q. Ji, YybT Is a Signaling Protein That Contains a Cyclic Dinucleotide Phosphodiesterase Domain and a GGDEF Domain with ATPase Activity, Journal of Biological Chemistry, vol.285, issue.1, pp.473-482, 2010.
DOI : 10.1074/jbc.M109.040238

L. Aravind and E. Koonin, A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial recJ exonuclease, Trends in Biochemical Sciences, vol.23, issue.1, pp.17-19, 1998.
DOI : 10.1016/S0968-0004(97)01162-6

N. Keppetipola and S. Shuman, Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase, RNA, vol.12, issue.1, pp.73-82, 2006.
DOI : 10.1261/rna.2196406

G. Postic, A. Danchin, and U. Mechold, Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae, RNA, vol.18, issue.1, pp.155-165, 2012.
DOI : 10.1261/rna.029132.111

URL : https://hal.archives-ouvertes.fr/pasteur-01427515

B. James, A. Williams, and P. Marsh, The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium, Journal of Applied Microbiology, vol.67, issue.4, pp.669-677, 2000.
DOI : 10.1046/j.1365-2672.1999.00639.x

L. Zhang and Z. He, Radiation-sensitive Gene A (RadA) Targets DisA, DNA Integrity Scanning Protein A, to Negatively Affect Cyclic Di-AMP Synthesis Activity in Mycobacterium smegmatis, Journal of Biological Chemistry, vol.288, issue.31, pp.22426-22436, 2013.
DOI : 10.1074/jbc.M113.464883

C. Beam, C. Saveson, and S. Lovett, Role for radA/sms in Recombination Intermediate Processing in Escherichia coli, Journal of Bacteriology, vol.184, issue.24, pp.6836-6844, 2002.
DOI : 10.1128/JB.184.24.6836-6844.2002

S. Lovett, Replication arrest-stimulated recombination: Dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB, DNA Repair, vol.5, issue.12, pp.1421-1427, 2006.
DOI : 10.1016/j.dnarep.2006.06.008

V. Gamulin, H. Cetkovic, and I. Ahel, Identification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis, FEMS Microbiol Lett, vol.238, issue.04, pp.378-109700520, 2004.

L. Rand, J. Hinds, B. Springer, P. Sander, and R. Buxton, The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA, Molecular Microbiology, vol.19, issue.3, pp.1031-1042, 2003.
DOI : 10.1046/j.1365-2958.2003.03765.x

A. Ablasser, M. Goldeck, T. Cavlar, T. Deimling, and G. Witte, cGAS produces a 29259-linked cyclic dinucleotide second messenger that activates STING, Nature, vol.49810, pp.380-384, 1038.
DOI : 10.1038/nature12306

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143541

A. Datta and K. Niyogi, A novel oligoribonuclease of Escherichia coli. II. Mechanism of action, J Biol Chem, vol.250, pp.7313-7319, 1975.

I. Vvedenskaya, J. Sharp, S. Goldman, P. Kanabar, and J. Livny, Growth phase-dependent control of transcription start site selection and gene expression by nanoRNAs, Genes & Development, vol.26, issue.13, pp.1498-1507, 1498.
DOI : 10.1101/gad.192732.112

S. Goldman, J. Sharp, I. Vvedenskaya, J. Livny, and S. Dove, NanoRNAs Prime Transcription Initiation In??Vivo, Molecular Cell, vol.42, issue.6, pp.817-825, 2011.
DOI : 10.1016/j.molcel.2011.06.005

M. Fang, W. Zeisberg, C. Condon, V. Ogryzko, and A. Danchin, Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis, Nucleic Acids Research, vol.37, issue.15, pp.5114-5125, 2009.
DOI : 10.1093/nar/gkp527

URL : https://hal.archives-ouvertes.fr/hal-00459936

D. Krause, Mycoplasma pneumoniae cytadherence: unravelling the tie that binds, Molecular Microbiology, vol.125, issue.2, pp.247-253, 1996.
DOI : 10.1016/0378-1119(88)90323-X

Y. Bai, Y. J. Eisele, L. Underwood, A. Koestler, and B. , Two DHH Subfamily 1 Proteins in Streptococcus pneumoniae Possess Cyclic Di-AMP Phosphodiesterase Activity and Affect Bacterial Growth and Virulence, Journal of Bacteriology, vol.195, issue.22, pp.5123-513200769, 1128.
DOI : 10.1128/JB.00769-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811582

C. Sassetti, D. Boyd, and E. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Molecular Microbiology, vol.1, issue.Suppl 1), pp.77-84, 2003.
DOI : 10.1046/j.1365-2958.2003.03425.x