Complete genome sequence of the animal pathogen Listeria ivanovii, which provides insights into host specificities and evolution of the genus Listeria.

To cite this version:

C. Buchrieser, C. Rusniok, P Garrido, T Hain, M Scortti, et al.. Complete genome sequence of the animal pathogen Listeria ivanovii, which provides insights into host specificities and evolution of the genus Listeria.. Journal of Bacteriology, American Society for Microbiology, 2011, 193 (23), pp.6787-6788. <10.1128/JB.06120-11>. <pasteur-01423120>

HAL Id: pasteur-01423120

https://hal-pasteur.archives-ouvertes.fr/pasteur-01423120

Submitted on 28 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
GENOME ANNOUNCEMENTS

Complete Genome Sequence of the Animal Pathogen Listeria ivanovii, Which Provides Insights into Host Specificities and Evolution of the Genus Listeria

C. Buchrieser,1* C. Rusniok,1 P. Garrido,1,2,3 T. Hain,4 M. Scotti,3,5 R. Lampidis,6 U. Kärst,7 T. Chakraborty,4 P. Cossart,8 J. Kreft,6 J. A. Vazquez-Boland,3,5 W. Goebel,6,9 and P. Glaser2*

Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS URA 2171, 75724 Paris, France;1 Institut Pasteur, Laboratoire Evolution et Génomique Bactériennes and CNRS URA 2171, 75724 Paris, France;2 Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, and Universidad de León, 24071 León, Spain;3 Institute of Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, 35392 Giessen, Germany;4 Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection & Evolution, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;5 Biocenter-Microbiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;6 Department of Cell Biology/Cellular Proteomics, Helmholtz-Centre for Infection Research, Infoboxenstrasse 7, 38124 Braunschweig, Germany;7 Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, Inserm U604, F-75015 Paris, INRA USC2020, Paris, France;8; and Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany9

Received 2 September 2011/Accepted 19 September 2011

We report the complete and annotated genome sequence of the animal pathogen Listeria ivanovii subsp. ivanovii strain PAM 55 (serotype 5), isolated in 1997 in Spain from an outbreak of abortion in sheep. The sequence and its analysis are available at an interactive genome browser at the Institut Pasteur (http://genolist.pasteur.fr/LivaList/).

Listeria ivanovii, a Gram-positive, facultative intracellular pathogen, belongs to the genus Listeria, which comprises eight species that are phylogenetically closely related (12). Listeria monocytogenes and L. ivanovii are the etiological agents of listeriosis, a food-borne infection (11, 13); the other six species are harmless environmental saprophytes. Whereas L. monocytogenes infects both humans and animals, causing meningococcal sepsis and meningitis (1, 4, 9, 14), L. ivanovii predominantly infects small ruminants and cattle, causing septicaemic disease with enteritis, neonatal sepsis, and abortion but no infection of the brain (10). Human cases of L. ivanovii infections are extremely rare, as only seven cases have been reported in the literature since its first isolation in 1955 (3, 8).

Genome sequencing of strain PAM55 was done as previously described (7). Briefly, two libraries (1 to 3 kb) were generated by random mechanical shearing of genomic DNA, followed by cloning of the fragments into pcDNA-2.1 (Invitrogen). A scaffold was obtained by end sequencing clones from a BAC library that was constructed as described previously (2). Sequencing to 8x coverage was done by capillary sequencing following synthesis of BAC library DNA fragments

* Corresponding author. Mailing address: Institut Pasteur, CNRS URA 2171, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France. Phone for C. Buchrieser: (33-1)-45-68-83-72, Fax: (33-1)-45-68-84-06. E-mail: cbuch@pasteur.fr. Phone for P. Glaser: (33-1)-45-68-89-96. Fax: (33-1)-45-68-84-06. E-mail: pglas@pasteur.fr.

The sequence and its analysis are available at an interactive genome browser at the Institut Pasteur (http://genolist.pasteur.fr/LivaList/).

Listeria monocytogenes and L. ivanovii are the etiological agents of listeriosis, a food-borne infection. The other six species are harmless environmental saprophytes. These species differ in their ability to infect different mammal species.

The complete genome sequence of L. ivanovii provides insights into its host specificity and evolution within the genus Listeria.
frameshift mutations (143 ORFs all together). This suggests that L. ivanovii has undergone a recent bottleneck in its evolution, possibly leading to the better adaptation to ruminants. The sequence analysis uncovered features related to host range and virulence, and comparative analysis with the other Listeria species allows the proposal of a refined model for the evolution of virulence in the genus, suggesting a dynamic transition between adaptation to intracellular parasitism and environmental saprophytism.

Nucleotide sequence accession number. The L. ivanovii subsp. ivanovii serovar 5 (PAM55/ATCC BAA-678/CIP 107777) genome sequence has been deposited in the EMBL database under accession no. FR687253.

The Listeria consortium dedicates this work to Juergen Wehland, who passed away prematurely.

We are grateful to Louis Jones for setting up the interactive genome browser LivaList.

This work was supported by the Institut Pasteur, the Centre National de Recherche Scientifique (CNRS), the German Federal Ministry for Education and Research (BMBF) through the Competence Network PathoGenoMik (031U213B), the European Union (FP6), and the Spanish Ministry for Science and Innovation (GEN2006-27774). Work in the laboratory of J.A.V.-B. is supported by The Wellcome Trust.

REFERENCES