H. Wu, H. Zeng, R. Lam, W. Tempel, and M. Amaya, Structural and Histone Binding Ability Characterizations of Human PWWP Domains, PLoS ONE, vol.56, issue.6, p.18919, 2011.
DOI : 10.1371/journal.pone.0018919.s003

Y. Izumoto, T. Kuroda, H. Harada, T. Kishimoto, and H. Nakamura, Hepatoma-Derived Growth Factor Belongs to a Gene Family in Mice Showing Significant Homology in the Amino Terminus, Biochemical and Biophysical Research Communications, vol.238, issue.1, pp.26-32, 1997.
DOI : 10.1006/bbrc.1997.7233

I. Stec, T. Wright, G. Van-ommen, P. De-boer, and A. Van-haeringen, WHSC1, a 90 kb SET Domain-Containing Gene, Expressed in Early Development and Homologous to a Drosophila Dysmorphy Gene Maps in the Wolf-Hirschhorn Syndrome Critical Region and is Fused to IgH in t(1;14) Multiple Myeloma, Human Molecular Genetics, vol.7, issue.7, pp.1071-1082, 1998.
DOI : 10.1093/hmg/7.7.1071

A. Dhayalan, A. Rajavelu, P. Rathert, R. Tamas, and R. Jurkowska, The Dnmt3a PWWP Domain Reads Histone 3 Lysine 36 Trimethylation and Guides DNA Methylation, Journal of Biological Chemistry, vol.285, issue.34, pp.26114-26120, 2010.
DOI : 10.1074/jbc.M109.089433

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924014

V. Maltby, B. Martin, J. Schulze, I. Johnson, and T. Hentrich, Histone H3 Lysine 36 Methylation Targets the Isw1b Remodeling Complex to Chromatin, Molecular and Cellular Biology, vol.32, issue.17, pp.3479-3485, 2012.
DOI : 10.1128/MCB.00389-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422011

M. Pradeepa, H. Sutherland, J. Ule, G. Grimes, and W. Bickmore, Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing, PLoS Genetics, vol.122, issue.5, p.1002717, 2012.
DOI : 10.1371/journal.pgen.1002717.s004

A. Vezzoli, N. Bonadies, M. Allen, S. Freund, and C. Santiveri, Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1, Nature Structural & Molecular Biology, vol.618, issue.5, pp.617-619, 2010.
DOI : 10.1038/nsmb1338

J. Eidahl, B. Crowe, J. North, C. Mckee, and N. Shkriabai, Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes, Nucleic Acids Research, vol.41, issue.6, pp.3924-3936, 2013.
DOI : 10.1093/nar/gkt074

R. Van-nuland, F. Van-schaik, M. Simonis, S. Van-heesch, and E. Cuppen, Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain, Epigenetics & Chromatin, vol.6, issue.1, p.12, 2013.
DOI : 10.1038/nprot.2007.406

T. Chen, N. Tsujimoto, and E. Li, The PWWP Domain of Dnmt3a and Dnmt3b Is Required for Directing DNA Methylation to the Major Satellite Repeats at Pericentric Heterochromatin, Molecular and Cellular Biology, vol.24, issue.20, pp.9048-9058, 2004.
DOI : 10.1128/MCB.24.20.9048-9058.2004

C. Qiu, K. Sawada, X. Zhang, and X. Cheng, The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNAbinding folds, Nat Struct Biol, vol.9, pp.217-224, 2002.

S. Lukasik, T. Cierpicki, M. Borloz, J. Grembecka, and A. Everett, High resolution structure of the HDGF PWWP domain: A potential DNA binding domain, Protein Science, vol.15, issue.2, pp.314-323, 2006.
DOI : 10.1110/ps.051751706

Y. Qiu, W. Zhang, C. Zhao, Y. Wang, and W. Wang, Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA, Biochemical Journal, vol.31, issue.3, pp.527-538, 2012.
DOI : 10.1063/1.470117

M. Shun, Y. Botbol, X. Li, D. Nunzio, F. Daigle et al., Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity, Journal of Virology, vol.82, issue.23, pp.11555-11567, 2008.
DOI : 10.1128/JVI.01561-08

S. Sue, J. Chen, S. Lee, W. Wu, and T. Huang, Solution Structure and Heparin Interaction of Human Hepatoma-derived Growth Factor, Journal of Molecular Biology, vol.343, issue.5, pp.1365-1377, 2004.
DOI : 10.1016/j.jmb.2004.09.014

I. Stec, S. Nagl, G. Van-ommen, and J. Den-dunnen, The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation?, FEBS Letters, vol.3, issue.1, pp.1-5, 2000.
DOI : 10.1016/S0014-5793(00)01449-6

Y. Shikauchi, A. Saiura, T. Kubo, Y. Niwa, and J. Yamamoto, SALL3 Interacts with DNMT3A and Shows the Ability To Inhibit CpG Island Methylation in Hepatocellular Carcinoma, Molecular and Cellular Biology, vol.29, issue.7, pp.1944-1958, 2009.
DOI : 10.1128/MCB.00840-08

J. Park, T. Kim, Y. Jung, S. Song, and S. Kim, DNA methyltransferase 3B mutant in ICF syndrome interacts non-covalently with SUMO-1, Journal of Molecular Medicine, vol.281, issue.11, pp.1269-1277, 2008.
DOI : 10.1007/s00109-008-0392-5

K. Laue, S. Daujat, J. Crump, N. Plaster, and H. Roehl, The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity, Development, vol.135, issue.11, pp.1935-1946, 2008.
DOI : 10.1242/dev.017160

J. Kim, J. Daniel, A. Espejo, A. Lake, and M. Krishna, Tudor, MBT and chromo domains gauge the degree of lysine methylation, EMBO reports, vol.62, pp.397-403, 2006.
DOI : 10.1128/MCB.25.15.6404-6414.2005

S. Maurer-stroh, N. Dickens, L. Hughes-davies, T. Kouzarides, and F. Eisenhaber, The Tudor domain ???Royal Family???: Tudor, plant Agenet, Chromo, PWWP and MBT domains, Trends in Biochemical Sciences, vol.28, issue.2, pp.69-74, 2003.
DOI : 10.1016/S0968-0004(03)00004-5

M. Llano, M. Vanegas, N. Hutchins, D. Thompson, and S. Delgado, Identification and Characterization of the Chromatin-binding Domains of the HIV-1 Integrase Interactor LEDGF/p75, Journal of Molecular Biology, vol.360, issue.4, 2006.
DOI : 10.1016/j.jmb.2006.04.073

F. Turlure, E. Devroe, P. Silver, and A. Engelman, Human cell proteins and human immunodeficiency virus DNA integration, Frontiers in Bioscience, vol.9, issue.1-3, pp.3187-3208, 2004.
DOI : 10.2741/1472

H. Ge, Y. Si, and A. Wolffe, A Novel Transcriptional Coactivator, p52, Functionally Interacts with the Essential Splicing Factor ASF/SF2, Molecular Cell, vol.2, issue.6, pp.751-759, 1998.
DOI : 10.1016/S1097-2765(00)80290-7

K. Bartholomeeusen, F. Christ, J. Hendrix, J. Rain, and S. Emiliani, Lens Epithelium-derived Growth Factor/p75 Interacts with the Transposase-derived DDE Domain of PogZ, Journal of Biological Chemistry, vol.284, issue.17, pp.11467-11477, 2009.
DOI : 10.1074/jbc.M807781200

S. Hughes, V. Jenkins, M. Dar, A. Engelman, and P. Cherepanov, Transcriptional Co-activator LEDGF Interacts with Cdc7-Activator of S-phase Kinase (ASK) and Stimulates Its Enzymatic Activity, Journal of Biological Chemistry, vol.285, issue.1, pp.541-554, 2010.
DOI : 10.1074/jbc.M109.036491

G. Maertens, P. Cherepanov, and A. Engelman, Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin, Journal of Cell Science, vol.119, issue.12, pp.2563-2571, 2006.
DOI : 10.1242/jcs.02995

URL : http://jcs.biologists.org/cgi/content/short/119/12/2563

A. Yokoyama and M. Cleary, Menin Critically Links MLL Proteins with LEDGF on Cancer-Associated Target Genes, Cancer Cell, vol.14, issue.1, pp.36-46, 2008.
DOI : 10.1016/j.ccr.2008.05.003

URL : http://doi.org/10.1016/j.ccr.2008.05.003

P. Cherepanov, G. Maertens, P. Proost, B. Devreese, and J. Van-beeumen, HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells, Journal of Biological Chemistry, vol.278, issue.1, pp.372-381, 2003.
DOI : 10.1074/jbc.M209278200

P. Cherepanov, LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro, Nucleic Acids Research, vol.35, issue.1, pp.113-124, 2007.
DOI : 10.1093/nar/gkl885

P. Cherepanov, E. Devroe, P. Silver, and A. Engelman, Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase, Journal of Biological Chemistry, vol.279, issue.47, pp.48883-48892, 2004.
DOI : 10.1074/jbc.M406307200

J. De-rijck, L. Vandekerckhove, R. Gijsbers, A. Hombrouck, and J. Hendrix, Overexpression of the Lens Epithelium-Derived Growth Factor/p75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication, Journal of Virology, vol.80, issue.23, pp.11498-11509, 2006.
DOI : 10.1128/JVI.00801-06

S. Emiliani, A. Mousnier, K. Busschots, M. Maroun, and B. Van-maele, Integrase Mutants Defective for Interaction with LEDGF/p75 Are Impaired in Chromosome Tethering and HIV-1 Replication, Journal of Biological Chemistry, vol.280, issue.27, pp.25517-25523, 2005.
DOI : 10.1074/jbc.M501378200

M. Llano, D. Saenz, A. Meehan, P. Wongthida, and M. Peretz, An Essential Role for LEDGF/p75 in HIV Integration, Science, vol.314, issue.5798, 2006.
DOI : 10.1126/science.1132319

M. Shun, N. Ragahvendra, N. Vandergraaf, J. Daigle, and S. Hughes, LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes & Development, vol.21, issue.14, pp.1767-1778, 2007.
DOI : 10.1101/gad.1565107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920171

A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, and J. Leipzig, A role for LEDGF/p75 in targeting HIV DNA integration, Nature Medicine, vol.17, issue.12, pp.1287-1289, 2005.
DOI : 10.1038/nm1329

R. Gijsbers, S. Vets, D. Rijck, J. Ocwieja, K. Ronen et al., Role of the PWWP Domain of Lens Epithelium-derived Growth Factor (LEDGF)/p75 Cofactor in Lentiviral Integration Targeting, Journal of Biological Chemistry, vol.286, issue.48, pp.41812-41825, 2011.
DOI : 10.1074/jbc.M111.255711

H. Marshall, R. K. Berry, C. Llano, M. Sutherland, and H. , Role of PSIP1/LEDGF/p75 in Lentiviral Infectivity and Integration Targeting, Lentiviral Infectivity and Integration Targeting, p.1340, 2007.
DOI : 10.1371/journal.pone.0001340.s003

P. Cherepanov, A. Ambrosio, S. Rahman, T. Ellenberger, and A. Engelman, Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75, Proceedings of the National Academy of Sciences, vol.102, issue.48, pp.17308-17313, 2005.
DOI : 10.1073/pnas.0506924102

F. Christ, S. Shaw, J. Demeulemeester, B. Desimmie, and A. Marchand, Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization, Antimicrobial Agents and Chemotherapy, vol.56, issue.8, pp.4365-4374, 2012.
DOI : 10.1128/AAC.00717-12

F. Christ, A. Voet, A. Marchand, S. Nicolet, and B. Desimmie, Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication, Nature Chemical Biology, vol.70, issue.6, pp.442-448, 2010.
DOI : 10.1038/nchembio.370

L. Du, Y. Zhao, J. Chen, L. Yang, and Y. Zheng, D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75, Biochemical and Biophysical Research Communications, vol.375, issue.1, pp.139-144, 2008.
DOI : 10.1016/j.bbrc.2008.07.139

Z. Hayouka, M. Hurevich, A. Levin, H. Benyamini, and A. Iosub, Cyclic peptide inhibitors of HIV-1 integrase derived from the LEDGF/p75 protein, Bioorganic & Medicinal Chemistry, vol.18, issue.23, pp.8388-8395, 2010.
DOI : 10.1016/j.bmc.2010.09.046

M. Tsiang, G. Jones, A. Niedziela-majka, E. Kan, and E. Lansdon, New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action, Journal of Biological Chemistry, vol.287, issue.25, pp.21189-21203, 2012.
DOI : 10.1074/jbc.M112.347534

A. Engelman and P. Cherepanov, The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication, PLoS Pathogens, vol.4, issue.3, p.1000046, 2008.
DOI : 10.1371/journal.ppat.1000046.g004

URL : http://doi.org/10.1371/journal.ppat.1000046

O. Rando, Combinatorial complexity in chromatin structure and function: revisiting the histone code, Current Opinion in Genetics & Development, vol.22, issue.2, pp.148-155, 2012.
DOI : 10.1016/j.gde.2012.02.013

M. Fromont-racine, J. Rain, and P. Legrain, Building protein-protein networks by two-hybrid mating strategy, Methods Enzymol, vol.350, pp.513-524, 2002.
DOI : 10.1016/S0076-6879(02)50982-4

Y. Botbol, N. Raghavendra, S. Rahman, A. Engelman, and M. Lavigne, Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro, Nucleic Acids Research, vol.36, issue.4, pp.1237-1246, 2008.
DOI : 10.1093/nar/gkm1127

P. Cassonnet, C. Rolloy, G. Neveu, P. Vidalain, and T. Chantier, Benchmarking a luciferase complementation assay for detecting protein complexes, Nature Methods, vol.8, issue.12, pp.990-992, 2011.
DOI : 10.1093/bioinformatics/btq430

P. Charneau, G. Mirambeau, P. Roux, S. Paulous, and H. Buc, HIV-1 Reverse Transcription A Termination Step at the Center of the Genome, Journal of Molecular Biology, vol.241, issue.5, pp.651-662, 1994.
DOI : 10.1006/jmbi.1994.1542

C. Petit, O. Schwartz, and F. Mammano, Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase, J Virol, vol.73, pp.5079-5088, 1999.
URL : https://hal.archives-ouvertes.fr/pasteur-01372744

M. Jang, K. Mochizuki, M. Zhou, H. Jeong, and J. Brady, The Bromodomain Protein Brd4 Is a Positive Regulatory Component of P-TEFb and Stimulates RNA Polymerase II-Dependent Transcription, Molecular Cell, vol.19, issue.4, pp.523-534, 2005.
DOI : 10.1016/j.molcel.2005.06.027

A. Borman, C. Quillent, P. Charneau, C. Dauguet, and F. Clavel, Human immunodeficiency virus type 1 Vif-mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity, J Virol, vol.69, pp.2058-2067, 1995.

J. Yee, T. Friedmann, and J. Burns, Chapter 5 Generation of High-Titer Pseudotyped Retroviral Vectors with Very Broad Host Range, Methods Cell Biol, vol.43, pp.99-112, 1994.
DOI : 10.1016/S0091-679X(08)60600-7

S. Butler, M. Hansen, and F. Bushman, A quantitative assay for HIV DNA integration in vivo, Nature Medicine, vol.7, issue.5, pp.631-634, 2001.
DOI : 10.1038/87979

A. Brussel and P. Sonigo, Analysis of Early Human Immunodeficiency Virus Type 1 DNA Synthesis by Use of a New Sensitive Assay for Quantifying Integrated Provirus, Journal of Virology, vol.77, issue.18, pp.10119-10124, 2003.
DOI : 10.1128/JVI.77.18.10119-10124.2003

D. Nunzio, F. Danckaert, A. Fricke, T. Perez, P. Fernandez et al., Human Nucleoporins Promote HIV-1 Docking at the Nuclear Pore, Nuclear Import and Integration, PLoS ONE, vol.7, issue.9, p.46037, 2012.
DOI : 10.1371/journal.pone.0046037.s003

K. Bartholomeeusen, D. Rijck, J. Busschots, K. Desender, L. Gijsbers et al., Differential Interaction of HIV-1 Integrase and JPO2 with the C Terminus of LEDGF/p75, Journal of Molecular Biology, vol.372, issue.2, pp.407-421, 2007.
DOI : 10.1016/j.jmb.2007.06.090

E. Stefan, S. Aquin, N. Berger, C. Landry, and B. Nyfeler, Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo, Proceedings of the National Academy of Sciences, vol.104, issue.43, pp.16916-16921, 2007.
DOI : 10.1073/pnas.0704257104

G. Neveu, R. Barouch-bentov, A. Ziv-av, D. Gerber, and Y. Jacob, Identification and Targeting of an Interaction between a Tyrosine Motif within Hepatitis C Virus Core Protein and AP2M1 Essential for Viral Assembly, PLoS Pathogens, vol.8, issue.8, p.1002845, 2012.
DOI : 10.1371/journal.ppat.1002845.s001

G. Neveu, P. Cassonnet, P. Vidalain, C. Rolloy, and J. Mendoza, Comparative analysis of virus???host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase, Methods, vol.58, issue.4, pp.349-359, 2012.
DOI : 10.1016/j.ymeth.2012.07.029

M. Muller, Y. Jacob, L. Jones, A. Weiss, and L. Brino, Large Scale Genotype Comparison of Human Papillomavirus E2-Host Interaction Networks Provides New Insights for E2 Molecular Functions, PLoS Pathogens, vol.27, issue.6, p.1002761, 2012.
DOI : 10.1371/journal.ppat.1002761.s014

URL : https://hal.archives-ouvertes.fr/hal-00965872

M. Vanegas, M. Llano, S. Delgado, D. Thompson, and M. Peretz, Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering, Journal of Cell Science, vol.118, issue.8, pp.1733-1743, 2005.
DOI : 10.1242/jcs.02299

Y. Ge, M. Pu, H. Gowher, H. Wu, and J. Ding, Chromatin Targeting of de Novo DNA Methyltransferases by the PWWP Domain, Journal of Biological Chemistry, vol.279, issue.24, pp.25447-25454, 2004.
DOI : 10.1074/jbc.M312296200

G. Velasco, S. Grkovic, and S. Ansieau, New Insights into BS69 Functions, Journal of Biological Chemistry, vol.281, issue.24, pp.16546-16550, 2006.
DOI : 10.1074/jbc.M600573200

O. Flaherty, E. Kaye, and J. , TOX defines a conserved subfamily of HMG-box proteins, BMC Genomics, vol.4, issue.1, p.13, 2003.
DOI : 10.1186/1471-2164-4-13

P. Aliahmad, A. Seksenyan, and J. Kaye, The many roles of TOX in the immune system, Current Opinion in Immunology, vol.24, issue.2, pp.173-177, 2012.
DOI : 10.1016/j.coi.2011.12.001

S. Lee, J. Lee, Y. Maeng, Y. Kim, and Y. Kwon, Langerhans cell protein 1 (LCP1) binds to PNUTS in the nucleus: implications for this complex in transcriptional regulation, Experimental and Molecular Medicine, vol.3, issue.3, pp.189-200, 2009.
DOI : 10.3858/emm.2009.41.3.022

K. Jensen, B. Dredge, G. Stefani, R. Zhong, and R. Buckanovich, Nova-1 Regulates Neuron-Specific Alternative Splicing and Is Essential for Neuronal Viability, Neuron, vol.25, issue.2, pp.359-371, 2000.
DOI : 10.1016/S0896-6273(00)80900-9

B. Dredge, G. Stefani, C. Engelhard, and R. Darnell, Nova autoregulation reveals dual functions in neuronal splicing, The EMBO Journal, vol.24, issue.8, pp.1608-1620, 2005.
DOI : 10.1038/sj.emboj.7600630

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142566

R. Buckanovich and R. Darnell, The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo., Molecular and Cellular Biology, vol.17, issue.6, pp.3194-3201, 1997.
DOI : 10.1128/MCB.17.6.3194

K. Musunuru and R. Darnell, Determination and augmentation of RNA sequence specificity of the Nova K-homology domains, Nucleic Acids Research, vol.32, issue.16, pp.4852-4861, 2004.
DOI : 10.1093/nar/gkh799

A. Ramos, D. Hollingworth, S. Major, S. Adinolfi, and G. Kelly, Role of Dimerization in KH/RNA Complexes:?? The Example of Nova KH3, Biochemistry, vol.41, issue.13, pp.4193-4201, 2002.
DOI : 10.1021/bi011994o

M. Teplova, L. Malinina, J. Darnell, J. Song, and M. Lu, Protein-RNA and Protein-Protein Recognition by Dual KH1/2 Domains of the Neuronal Splicing Factor Nova-1, Structure, vol.19, issue.7, pp.930-944, 2011.
DOI : 10.1016/j.str.2011.05.002

C. Racca, A. Gardiol, T. Eom, J. Ule, and A. Triller, The neuronal splicing factor Nova co-localizes with target RNAs in the dendrite, Frontiers in Neural Circuits, vol.4, p.5, 2010.
DOI : 10.3389/neuro.04.005.2010

R. Buckanovich, J. Posner, and R. Darnell, Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system, Neuron, vol.11, issue.4, pp.657-672, 1993.
DOI : 10.1016/0896-6273(93)90077-5

R. Buckanovich, Y. Yang, and R. Darnell, The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies, J Neurosci, vol.16, pp.1114-1122, 1996.

A. Dey, F. Chitsaz, A. Abbasi, T. Misteli, and K. Ozato, The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis, Proceedings of the National Academy of Sciences, vol.100, issue.15, pp.8758-8763, 2003.
DOI : 10.1073/pnas.1433065100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166386

A. Hombrouck, D. Rijck, J. Hendrix, J. Vandekerckhove, L. Voet et al., Virus Evolution Reveals an Exclusive Role for LEDGF/p75 in Chromosomal Tethering of HIV, PLoS Pathogens, vol.6, issue.3, p.47, 2007.
DOI : 10.1371/journal.ppat.0030047.sg005

J. Hendrix, R. Gijsbers, D. Rijck, J. Voet, A. Hotta et al., The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering, Nucleic Acids Research, vol.39, issue.4, pp.1310-1325, 2011.
DOI : 10.1093/nar/gkq933

J. De-rijck, K. Bartholomeeusen, H. Ceulemans, Z. Debyser, and R. Gijsbers, High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region, Nucleic Acids Research, vol.38, issue.18, pp.6135-6147, 2010.
DOI : 10.1093/nar/gkq410

N. Nameki, N. Tochio, S. Koshiba, M. Inoue, and T. Yabuki, Solution structure of the PWWP domain of the hepatoma-derived growth factor family, Protein Science, vol.14, issue.3, pp.756-764, 2005.
DOI : 10.1110/ps.04975305

S. Sue, W. Lee, S. Tien, S. Lee, and J. Yu, PWWP Module of Human Hepatoma-derived Growth Factor Forms a Domain-swapped Dimer with Much Higher Affinity for Heparin, Journal of Molecular Biology, vol.367, issue.2, pp.456-472, 2007.
DOI : 10.1016/j.jmb.2007.01.010

H. Ge, Y. Si, and R. Roeder, Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation, The EMBO Journal, vol.17, issue.22, pp.6723-6729, 1998.
DOI : 10.1093/emboj/17.22.6723

B. Morand-du-puch, C. Barbier, E. Kraut, A. Coute, Y. Fuchs et al., TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs, Archives of Biochemistry and Biophysics, vol.507, issue.2, pp.296-303, 2011.
DOI : 10.1016/j.abb.2010.12.021

S. Joshi, Y. Sarpong, R. Peterson, and W. Scovell, Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding, Nucleic Acids Research, vol.40, issue.20, pp.10161-10171, 2012.
DOI : 10.1093/nar/gks815

URL : http://doi.org/10.1093/nar/gks815

J. Rowell, K. Simpson, K. Stott, M. Watson, and J. Thomas, HMGB1-Facilitated p53 DNA Binding Occurs via HMG-Box/p53 Transactivation Domain Interaction, Regulated by the Acidic Tail, Structure, vol.20, issue.12, pp.2014-2024, 2012.
DOI : 10.1016/j.str.2012.09.004

L. Wang, Q. Meng, Y. Jiao, J. Xu, and C. Ge, High-Mobility Group Boxes Mediate Cell Proliferation and Radiosensitivity via Retinoblastoma-Interaction-Dependent and -Independent Mechanisms, Cancer Biotherapy & Radiopharmaceuticals, vol.27, issue.5, pp.329-335, 2012.
DOI : 10.1089/cbr.2012.1199

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375072

M. Stros, A. Bacikova, E. Polanska, J. Stokrova, and F. Strauss, HMGB1 interacts with human topoisomerase II?? and stimulates its catalytic activity, Nucleic Acids Research, vol.35, issue.15, pp.5001-5013, 2007.
DOI : 10.1093/nar/gkm525

URL : http://doi.org/10.1093/nar/gkm525

A. Sharma, R. Larue, M. Plumb, N. Malani, and F. Male, BET proteins promote efficient murine leukemia virus integration at transcription start sites, Proceedings of the National Academy of Sciences, vol.110, issue.29, pp.12036-12041, 2013.
DOI : 10.1073/pnas.1307157110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718171

J. You, J. Croyle, A. Nishimura, K. Ozato, and P. Howley, Interaction of the Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic Chromosomes, Cell, vol.117, issue.3, pp.349-360, 2004.
DOI : 10.1016/S0092-8674(04)00402-7

J. You, V. Srinivasan, G. Denis, W. Harrington, J. Ballestas et al., Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Interacts with Bromodomain Protein Brd4 on Host Mitotic Chromosomes, Journal of Virology, vol.80, issue.18, pp.8909-8919, 2006.
DOI : 10.1128/JVI.00502-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1563901

J. Valle-casuso, D. Nunzio, F. Yang, Y. Reszka, N. Lienlaf et al., TNPO3 Is Required for HIV-1 Replication after Nuclear Import but prior to Integration and Binds the HIV-1 Core, Journal of Virology, vol.86, issue.10, pp.5931-5936, 2012.
DOI : 10.1128/JVI.00451-12

URL : https://hal.archives-ouvertes.fr/hal-00762028

A. Aiyar, P. Hindmarsh, A. Skalka, and J. Leis, Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: dependence on both long terminal repeat termini, J Virol, vol.70, pp.3571-3580, 1996.

C. Farnet and F. Bushman, HIV-1 cDNA Integration: Requirement of HMG I(Y) Protein for Function of Preintegration Complexes In Vitro, Cell, vol.88, issue.4, pp.483-492, 1997.
DOI : 10.1016/S0092-8674(00)81888-7

D. Moisy, S. Avilov, Y. Jacob, B. Laoide, and X. Ge, HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication, Journal of Virology, vol.86, issue.17, pp.9122-9133, 2012.
DOI : 10.1128/JVI.00789-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416134

P. Hindmarsh, T. Ridky, R. Reeves, M. Andrake, and A. Skalka, HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro, J Virol, vol.73, pp.2994-3003, 1999.

L. Li, K. Yoder, M. Hansen, J. Olvera, and M. Miller, Retroviral cDNA Integration: Stimulation by HMG I Family Proteins, Journal of Virology, vol.74, issue.23, pp.10965-10974, 2000.
DOI : 10.1128/JVI.74.23.10965-10974.2000

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC113176

T. Shinohara, D. Singh, and N. Fatma, LEDGF, a survival factor, activates stress-related genes, Progress in Retinal and Eye Research, vol.21, issue.3, pp.341-358, 2002.
DOI : 10.1016/S1350-9462(02)00007-1

D. Singh, N. Fatma, A. Kimura, L. Chylack, J. Shinohara et al., LEDGF Binds to Heat Shock and Stress-Related Element to Activate the Expression of Stress-Related Genes, Biochemical and Biophysical Research Communications, vol.283, issue.4, pp.943-955, 2001.
DOI : 10.1006/bbrc.2001.4887

H. Sutherland, K. Newton, D. Brownstein, M. Holmes, and C. Kress, Disruption of Ledgf/Psip1 Results in Perinatal Mortality and Homeotic Skeletal Transformations, Molecular and Cellular Biology, vol.26, issue.19, pp.7201-7210, 2006.
DOI : 10.1128/MCB.00459-06

A. Ferris, X. Wu, C. Hughes, C. Stewart, and S. Smith, Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.3135-3140, 2010.
DOI : 10.1073/pnas.0914142107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840313

A. Meehan, D. Saenz, J. Morrison, J. Garcia-rivera, and M. Peretz, LEDGF/p75 Proteins with Alternative Chromatin Tethers Are Functional HIV-1 Cofactors, PLoS Pathogens, vol.78, issue.7, p.1000522, 2009.
DOI : 10.1371/journal.ppat.1000522.s007

URL : http://doi.org/10.1371/journal.ppat.1000522

S. Desfarges and A. Ciuffi, Retroviral Integration Site Selection, Viruses, vol.2, issue.1, pp.111-130, 2010.
DOI : 10.3390/v2010111

URL : http://doi.org/10.3390/v2010111

M. Daugaard, A. Baude, K. Fugger, L. Povlsen, and H. Beck, LEDGF (p75) promotes DNA-end resection and homologous recombination, Nature Structural & Molecular Biology, vol.4, issue.8, pp.803-810, 2012.
DOI : 10.1038/nsmb.2314

M. Huen, J. Huang, J. Leung, S. Sy, and K. Leung, Regulation of Chromatin Architecture by the PWWP Domain-Containing DNA Damage-Responsive Factor EXPAND1/MUM1, Molecular Cell, vol.37, issue.6, pp.854-864, 2010.
DOI : 10.1016/j.molcel.2009.12.040

S. Sy, J. Chen, and M. Huen, The 53BP1-EXPAND1 connection in chromatin structure regulation, Nucleus, vol.1, issue.6, pp.472-474, 2010.
DOI : 10.1016/j.molcel.2009.02.002

E. Park, C. Iaccarino, J. Lee, I. Kwon, and S. Baik, Regulatory Roles of Heterogeneous Nuclear Ribonucleoprotein M and Nova-1 Protein in Alternative Splicing of Dopamine D2 Receptor Pre-mRNA, Journal of Biological Chemistry, vol.286, issue.28, pp.25301-25308, 2011.
DOI : 10.1074/jbc.M110.206540

E. Park, M. Lee, S. Baik, E. Cho, and G. Son, Nova-1 Mediates Glucocorticoid-induced Inhibition of Pre-mRNA Splicing of Gonadotropin-releasing Hormone Transcripts, Journal of Biological Chemistry, vol.284, issue.19, pp.12792-12800, 2009.
DOI : 10.1074/jbc.M807386200

J. Ule, G. Stefani, A. Mele, M. Ruggiu, and X. Wang, An RNA map predicting Nova-dependent splicing regulation, Nature, vol.123, issue.7119, pp.580-586, 2006.
DOI : 10.1038/nature05304

J. Ule, A. Ule, J. Spencer, A. Williams, and J. Hu, Nova regulates brain-specific splicing to shape the synapse, Nature Genetics, vol.2452, issue.8, pp.844-852, 2005.
DOI : 10.1038/ng1610

S. Brown, P. Stoilov, and Y. Xing, Chromatin and epigenetic regulation of pre-mRNA processing, Human Molecular Genetics, vol.21, issue.R1, pp.90-96, 2012.
DOI : 10.1093/hmg/dds353

R. Luco, Q. Pan, K. Tominaga, B. Blencowe, and O. Pereira-smith, Regulation of Alternative Splicing by Histone Modifications, Science, vol.327, issue.5968, pp.996-1000, 2010.
DOI : 10.1126/science.1184208

F. Gunderson, E. Merkhofer, and T. Johnson, Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements, Proceedings of the National Academy of Sciences, vol.108, issue.5, pp.2004-2009, 2011.
DOI : 10.1073/pnas.1011982108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033250

L. Piacentini, L. Fanti, R. Negri, D. Vescovo, V. Fatica et al., Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila, PLoS Genetics, vol.33, issue.10, p.1000670, 2009.
DOI : 10.1371/journal.pgen.1000670.s008

R. Sims, S. Millhouse, C. Chen, B. Lewis, and H. Erdjument-bromage, Recognition of Trimethylated Histone H3 Lysine 4 Facilitates the Recruitment of Transcription Postinitiation Factors and Pre-mRNA Splicing, Molecular Cell, vol.28, issue.4, pp.665-676, 2007.
DOI : 10.1016/j.molcel.2007.11.010

F. Christ, W. Thys, D. Rijck, J. Gijsbers, R. Albanese et al., Transportin-SR2 Imports HIV into the Nucleus, Current Biology, vol.18, issue.16, pp.1192-1202, 2008.
DOI : 10.1016/j.cub.2008.07.079

URL : http://doi.org/10.1016/j.cub.2008.07.079

Y. Koh, X. Wu, A. Ferris, K. Matreyek, and S. Smith, Differential Effects of Human Immunodeficiency Virus Type 1 Capsid and Cellular Factors Nucleoporin 153 and LEDGF/p75 on the Efficiency and Specificity of Viral DNA Integration, Journal of Virology, vol.87, issue.1, pp.648-658, 2013.
DOI : 10.1128/JVI.01148-12

K. Ocwieja, T. Brady, R. K. Huegel, A. Roth, and S. , HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2, PLoS Pathogens, vol.269, issue.3, p.1001313, 2011.
DOI : 10.1371/journal.ppat.1001313.s013

D. Nunzio, F. Fricke, T. Miccio, A. Valle-casuso, J. Perez et al., Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication, Virology, vol.440, issue.1, pp.8-18, 2013.
DOI : 10.1016/j.virol.2013.02.008