B. Bowerman, P. Brown, J. Bishop, and H. Varmus, A nucleoprotein complex mediates the integration of retroviral DNA., Genes & Development, vol.3, issue.4, pp.469-78, 1989.
DOI : 10.1101/gad.3.4.469

M. Miller, C. Farnet, and F. Bushman, Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition, J Virol, vol.71, pp.5382-90, 1997.

A. Engelman, K. Mizuuchi, and R. Craigie, HIV-1 DNA integration: Mechanism of viral DNA cleavage and DNA strand transfer, Cell, vol.67, issue.6, pp.1211-1232, 1991.
DOI : 10.1016/0092-8674(91)90297-C

P. Hindmarsh and J. Leis, Retroviral DNA integration, Microbiol Mol Biol Rev, vol.63, pp.836-879, 1999.

S. Sinha and D. Grandgenett, Recombinant Human Immunodeficiency Virus Type 1 Integrase Exhibits a Capacity for Full-Site Integration In Vitro That Is Comparable to That of Purified Preintegration Complexes from Virus-Infected Cells, Journal of Virology, vol.79, issue.13, pp.8208-8224, 2005.
DOI : 10.1128/JVI.79.13.8208-8216.2005

S. Sinha, M. Pursley, and D. Grandgenett, Efficient Concerted Integration by Recombinant Human Immunodeficiency Virus Type 1 Integrase without Cellular or Viral Cofactors, Journal of Virology, vol.76, issue.7, pp.3105-3118, 2002.
DOI : 10.1128/JVI.76.7.3105-3113.2002

S. Hare, S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, Retroviral intasome assembly and inhibition of DNA strand transfer, Nature, vol.25, issue.7286, pp.326-335, 2010.
DOI : 10.1038/nature08784

G. Maertens, S. Hare, and P. Cherepanov, The mechanism of retroviral integration from X-ray structures of its key intermediates, Nature, vol.14, issue.7321, pp.326-335, 2010.
DOI : 10.1038/nature09517

M. Jaskolski, J. Alexandratos, G. Bujacz, and A. Wlodawer, Piecing together the structure of retroviral integrase, an important target in AIDS therapy, FEBS Journal, vol.25, issue.Suppl. 1, pp.2926-2972, 2009.
DOI : 10.1111/j.1742-4658.2009.07009.x

L. Krishnan and A. Engelman, Retroviral Integrase Proteins and HIV-1 DNA Integration, Journal of Biological Chemistry, vol.287, issue.49, pp.40858-66, 2012.
DOI : 10.1074/jbc.R112.397760

K. Bao, H. Wang, J. Miller, D. Erie, A. Skalka et al., Functional Oligomeric State of Avian Sarcoma Virus Integrase, Journal of Biological Chemistry, vol.278, issue.2, pp.1323-1330, 2003.
DOI : 10.1074/jbc.C200550200

A. Faure, C. Calmels, C. Desjobert, M. Castroviejo, A. Caumont-sarcos et al., HIV-1 integrase crosslinked oligomers are active in vitro, Nucleic Acids Research, vol.33, issue.3, pp.977-86, 2005.
DOI : 10.1093/nar/gki241

M. Li, M. Mizuuchi, B. Jr, T. Craigie, and R. , Retroviral DNA integration: reaction pathway and critical intermediates, The EMBO Journal, vol.65, issue.6, pp.1295-304, 2006.
DOI : 10.1016/S0960-894X(03)00059-3

F. Michel, C. Crucifix, F. Granger, S. Eiler, J. Mouscadet et al., Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor, The EMBO Journal, vol.269, issue.7, pp.980-91, 2009.
DOI : 10.1073/pnas.93.24.13659

URL : https://hal.archives-ouvertes.fr/inserm-00384501

G. Ren, K. Gao, F. Bushman, and M. Yeager, Single-particle Image Reconstruction of a Tetramer of HIV Integrase Bound to DNA, Journal of Molecular Biology, vol.366, issue.1, pp.286-94, 2007.
DOI : 10.1016/j.jmb.2006.11.029

B. Van-maele, K. Busschots, L. Vandekerckhove, F. Christ, and Z. Debyser, Cellular co-factors of HIV-1 integration, Trends in Biochemical Sciences, vol.31, issue.2, pp.98-105, 2006.
DOI : 10.1016/j.tibs.2005.12.002

A. Cereseto, L. Manganaro, M. Gutierrez, M. Terreni, A. Fittipaldi et al., Acetylation of HIV-1 integrase by p300 regulates viral integration, The EMBO Journal, vol.300, issue.17, pp.3070-81, 2005.
DOI : 10.1038/sj.emboj.7600770

A. Zamborlini, A. Coiffic, G. Beauclair, O. Delelis, J. Paris et al., Impairment of Human Immunodeficiency Virus Type-1 Integrase SUMOylation Correlates with an Early Replication Defect, Journal of Biological Chemistry, vol.286, issue.23, pp.21013-21035, 2011.
DOI : 10.1074/jbc.M110.189274

A. Jordan, D. Bisgrove, and E. Verdin, HIV reproducibly establishes a latent infection after acute infection of T cells in vitro, The EMBO Journal, vol.22, issue.8, pp.1868-77, 2003.
DOI : 10.1093/emboj/cdg188

A. Jordan, P. Defechereux, and E. Verdin, The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation, The EMBO Journal, vol.20, issue.7, pp.1726-1764, 2001.
DOI : 10.1093/emboj/20.7.1726

D. Bisgrove, M. Lewinski, F. Bushman, and E. Verdin, Molecular mechanisms of HIV-1 proviral latency, Expert Review of Anti-infective Therapy, vol.3, issue.5, pp.805-819, 2005.
DOI : 10.1586/14787210.3.5.805

M. Dieudonne, P. Maiuri, C. Biancotto, A. Knezevich, A. Kula et al., Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery, The EMBO Journal, vol.166, issue.15, pp.2231-2274, 2009.
DOI : 10.1038/emboj.2009.141

Y. Han, K. Lassen, D. Monie, A. Sedaghat, S. Shimoji et al., Resting CD4+ T Cells from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Individuals Carry Integrated HIV-1 Genomes within Actively Transcribed Host Genes, Journal of Virology, vol.78, issue.12, pp.6122-6155, 2004.
DOI : 10.1128/JVI.78.12.6122-6133.2004

A. Marcello, S. Dhir, and M. Dieudonne, Nuclear positional control of HIV transcription in 4D, Nucleus, vol.114, issue.1, pp.8-11, 2010.
DOI : 10.1016/j.molcel.2007.11.030

S. Hacein-bey-abina, G. De-basile-saint, and M. Cavazzana-calvo, Gene therapy of X-linked severe combined immunodeficiency, Methods Mol Biol, vol.215, pp.247-59, 2003.

A. Engelman and P. Cherepanov, The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication, PLoS Pathogens, vol.4, issue.3, p.1000046, 2008.
DOI : 10.1371/journal.ppat.1000046.g004

J. De-rijck, C. De-kogel, J. Demeulemeester, S. Vets, E. Ashkar et al., The BET Family of Proteins Targets Moloney Murine Leukemia Virus Integration near Transcription Start Sites, Cell Reports, vol.5, issue.4, pp.886-94, 2013.
DOI : 10.1016/j.celrep.2013.09.040

A. Sharma, R. Larue, M. Plumb, N. Malani, F. Male et al., BET proteins promote efficient murine leukemia virus integration at transcription start sites, Proceedings of the National Academy of Sciences, vol.110, issue.29, pp.12036-12077, 2013.
DOI : 10.1073/pnas.1307157110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718171

A. Holman and J. Coffin, Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites, Proceedings of the National Academy of Sciences, vol.102, issue.17, pp.6103-6110, 2005.
DOI : 10.1073/pnas.0501646102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087937

M. Shun, N. Raghavendra, N. Vandegraaff, J. Daigle, S. Hughes et al., LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes & Development, vol.21, issue.14, pp.1767-78, 2007.
DOI : 10.1101/gad.1565107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920171

X. Wu, Y. Li, B. Crise, S. Burgess, and D. Munroe, Weak Palindromic Consensus Sequences Are a Common Feature Found at the Integration Target Sites of Many Retroviruses, Journal of Virology, vol.79, issue.8, pp.5211-5215, 2005.
DOI : 10.1128/JVI.79.8.5211-5214.2005

J. Eidahl, B. Crowe, J. North, C. Mckee, N. Shkriabai et al., Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes, Nucleic Acids Research, vol.41, issue.6, pp.3924-3960, 2013.
DOI : 10.1093/nar/gkt074

P. Lesbats, Y. Botbol, G. Chevereau, C. Vaillant, C. Calmels et al., Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient in vitro Integration into Stable Nucleosomes, PLoS Pathogens, vol.16, issue.2, p.1001280, 2011.
DOI : 10.1371/journal.ppat.1001280.s010

URL : https://hal.archives-ouvertes.fr/hal-00594715

S. Aiyer, G. Swapna, N. Malani, J. Aramini, W. Schneider et al., Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction, Nucleic Acids Research, vol.42, issue.9, pp.5917-5945, 2014.
DOI : 10.1093/nar/gku175

E. Serrao, L. Krishnan, M. Shun, X. Li, P. Cherepanov et al., Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding, Nucleic Acids Research, vol.42, issue.8, pp.5164-76, 2014.
DOI : 10.1093/nar/gku136

M. Kvaratskhelia, A. Sharma, R. Larue, E. Serrao, and A. Engelman, Molecular mechanisms of retroviral integration site selection, Nucleic Acids Research, vol.42, issue.16, pp.10209-10234, 2014.
DOI : 10.1093/nar/gku769

A. Valouev, S. Johnson, S. Boyd, C. Smith, A. Fire et al., Determinants of nucleosome organization in primary human cells, Nature, vol.304, issue.7352, pp.516-536, 2011.
DOI : 10.1038/nature10002

R. Katz, K. Gravuer, and A. Skalka, A Preferred Target DNA Structure for Retroviral Integrasein Vitro, Journal of Biological Chemistry, vol.273, issue.37, pp.24190-24195, 1998.
DOI : 10.1074/jbc.273.37.24190

D. Pruss, F. Bushman, and A. Wolffe, Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core., Proceedings of the National Academy of Sciences, vol.91, issue.13, pp.5913-5920, 1994.
DOI : 10.1073/pnas.91.13.5913

D. Pruss, R. Reeves, F. Bushman, and A. Wolffe, The influence of DNA and nucleosome structure on integration events directed by HIV integrase, J Biol Chem, vol.269, pp.25031-25072, 1994.

M. Pryciak, E. Varmus, and . Nucleosomes, Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection, Cell, vol.69, issue.5, pp.769-80, 1992.
DOI : 10.1016/0092-8674(92)90289-O

P. Pryciak, A. Sil, and H. Varmus, Retroviral integration into minichromosomes in vitro, EMBO J, vol.11, pp.291-303, 1992.

P. Pryciak, H. Müller, and H. Varmus, Simian virus 40 minichromosomes as targets for retroviral integration in vivo., Proceedings of the National Academy of Sciences, vol.89, issue.19, pp.9237-9278, 1992.
DOI : 10.1073/pnas.89.19.9237

E. Valkov, S. Gupta, S. Hare, A. Helander, P. Roversi et al., Functional and structural characterization of the integrase from the prototype foamy virus, Nucleic Acids Research, vol.37, issue.1, pp.243-55, 2009.
DOI : 10.1093/nar/gkn938

D. Grandgenett, S. Bera, K. Pandey, A. Vora, J. Zahm et al., Biochemical and biophysical analyses of concerted (U5/U3) integration, Methods, vol.47, issue.4, pp.229-265, 2008.
DOI : 10.1016/j.ymeth.2008.11.002

M. Li and R. Craigie, Nucleoprotein complex intermediates in HIV-1 integration, Methods, vol.47, issue.4, pp.237-279, 2009.
DOI : 10.1016/j.ymeth.2009.02.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311468

S. Hare, M. Shun, S. Gupta, E. Valkov, A. Engelman et al., A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75, PLoS Pathogens, vol.81, issue.1, p.1000259, 2009.
DOI : 10.1371/journal.ppat.1000259.s005

P. Cherepanov, LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro, Nucleic Acids Research, vol.35, issue.1, pp.113-137, 2007.
DOI : 10.1093/nar/gkl885

URL : http://doi.org/10.1093/nar/gkl885

K. Taganov, I. Cuesta, R. Daniel, L. Cirillo, R. Katz et al., Integrase-Specific Enhancement and Suppression of Retroviral DNA Integration by Compacted Chromatin Structure In Vitro, Journal of Virology, vol.78, issue.11, pp.5848-55, 2004.
DOI : 10.1128/JVI.78.11.5848-5855.2004

P. Milani, G. Chevereau, C. Vaillant, B. Audit, Z. Haftek-terreau et al., Nucleosome positioning by genomic excluding-energy barriers, Proceedings of the National Academy of Sciences, vol.106, issue.52, pp.22257-62, 2009.
DOI : 10.1073/pnas.0909511106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799728

C. Vaillant, B. Audit, and A. Arneodo, Experiments Confirm the Influence of Genome Long-Range Correlations on Nucleosome Positioning, Physical Review Letters, vol.99, issue.21, p.218103, 2007.
DOI : 10.1103/PhysRevLett.99.218103

URL : https://hal.archives-ouvertes.fr/hal-00337710

G. Wang, A. Ciuffi, J. Leipzig, C. Berry, and F. Bushman, HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications, Genome Research, vol.17, issue.8, pp.1186-94, 2007.
DOI : 10.1101/gr.6286907

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933515

C. Cattoglio, D. Pellin, E. Rizzi, G. Maruggi, G. Corti et al., High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors, Blood, vol.116, issue.25, pp.5507-5524, 2010.
DOI : 10.1182/blood-2010-05-283523

P. Lesbats, M. Lavigne, and V. Parissi, HIV-1 integration into chromatin: new insights and future perspectives, Future Virology, vol.6, issue.9, pp.1035-1078, 2011.
DOI : 10.2217/fvl.11.84

C. Vaillant, L. Palmeira, G. Chevereau, B. Audit, Y. Aubenton-carafa et al., A novel strategy of transcription regulation by intragenic nucleosome ordering, Genome Research, vol.20, issue.1, pp.59-67, 2009.
DOI : 10.1101/gr.096644.109

URL : https://hal.archives-ouvertes.fr/hal-00539428

N. Kaplan, I. Moore, Y. Fondufe-mittendorf, A. Gossett, D. Tillo et al., The DNA-encoded nucleosome organization of a eukaryotic genome, Nature, vol.12, issue.7236, pp.362-368, 2009.
DOI : 10.1038/nature07667

M. Lewinski, M. Yamashita, M. Emerman, A. Ciuffi, H. Marshall et al., Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection, PLoS Pathogens, vol.74, issue.6, p.60, 2006.
DOI : 10.1371/journal.ppat.0020060.st003

G. Goodarzi, G. Im, K. Brackmann, and D. Grandgenett, Concerted integration of retrovirus-like DNA by human immunodeficiency virus type 1 integrase

Y. Botbol, N. Raghavendra, S. Rahman, A. Engelman, and M. Lavigne, Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro, Nucleic Acids Research, vol.36, issue.4, pp.1237-1283, 2008.
DOI : 10.1093/nar/gkm1127

D. Primio, C. Quercioli, V. Allouch, A. Gijsbers, R. Christ et al., Single-Cell Imaging of HIV-1 Provirus (SCIP), Proceedings of the National Academy of Sciences, vol.110, issue.14, pp.5636-5677, 2013.
DOI : 10.1073/pnas.1216254110

R. Bojja, M. Andrake, S. Weigand, G. Merkel, O. Yarychkivska et al., Architecture of a Full-length Retroviral Integrase Monomer and Dimer, Revealed by Small Angle X-ray Scattering and Chemical Cross-linking, Journal of Biological Chemistry, vol.286, issue.19
DOI : 10.1074/jbc.M110.212571

P. Lesbats, M. Metifiot, C. Calmels, S. Baranova, G. Nevinsky et al., In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state, Nucleic Acids Research, vol.36, issue.22, pp.7043-58, 2008.
DOI : 10.1093/nar/gkn796

URL : https://hal.archives-ouvertes.fr/hal-00426343

D. Henriquez, C. Zhao, H. Zheng, J. Arbildua, M. Acevedo et al., Crosslinking and mass spectrometry suggest that the isolated NTD domain dimer of Moloney murine leukemia virus integrase adopts a parallel arrangement in solution, BMC Structural Biology, vol.13, issue.1, p.14, 2013.
DOI : 10.1002/(SICI)1097-0134(19981201)33:4<535::AID-PROT6>3.0.CO;2-D

J. Workman, I. Taylor, R. Kingston, and R. Roeder, Chapter 16 Control of Class II Gene Transcription during in Vitro Nucleosome Assembly, Methods Cell Biol, vol.35, pp.419-466, 1991.
DOI : 10.1016/S0091-679X(08)60582-8

S. Sif, A. Saurin, A. Imbalzano, and R. Kingston, Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes, Genes & Development, vol.15, issue.5, pp.603-621, 2001.
DOI : 10.1101/gad.872801