R. Craigie, F. Bushman, . Hiv, and . Integration, Cold Spring Harb Perspect Med, p.3385939, 2012.

P. Quashie, R. Sloan, and M. Wainberg, Novel therapeutic strategies targeting HIV integrase, BMC Medicine, vol.66, issue.12, pp.34-3348091, 2012.
DOI : 10.1093/jac/dkr389

URL : http://doi.org/10.1186/1741-7015-10-34

O. Delelis, V. Parissi, H. Leh, G. Mbemba, C. Petit et al., Efficient and Specific Internal Cleavage of a Retroviral Palindromic DNA Sequence by Tetrameric HIV-1 Integrase, PLoS ONE, vol.66, issue.7, pp.608-1905944, 2007.
DOI : 10.1371/journal.pone.0000608.t001

URL : https://hal.archives-ouvertes.fr/hal-00211177

O. Delelis, C. Petit, H. Leh, G. Mbemba, J. Mouscadet et al., A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles, Retrovirology, vol.2, issue.1, pp.31-1180852, 2005.
DOI : 10.1186/1742-4690-2-31

URL : https://hal.archives-ouvertes.fr/inserm-00090524

S. Thierry, S. Munir, E. Thierry, F. Subra, H. Leh et al., Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration, Retrovirology, vol.78, issue.1, pp.24-25808736, 2015.
DOI : 10.1186/s12977-015-0153-9

URL : http://doi.org/10.1186/s12977-015-0153-9

A. Cavazza, A. Moiani, and F. Mavilio, Mechanisms of Retroviral Integration and Mutagenesis, Human Gene Therapy, vol.24, issue.2, pp.119-150, 2013.
DOI : 10.1089/hum.2012.203

M. Kvaratskhelia, A. Sharma, R. Larue, E. Serrao, and A. Engelman, Molecular mechanisms of retroviral integration site selection. Nucleic acids research, p.25147212, 2014.

S. Carteau, C. Hoffmann, and F. Bushman, Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target, J Virol, vol.72, issue.5, pp.4005-4019, 1998.

A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig et al., A role for LEDGF/p75 in targeting HIV DNA integration, Nature Medicine, vol.17, issue.12, pp.1287-1296, 2005.
DOI : 10.1038/nm1329

M. Lewinski, M. Yamashita, M. Emerman, A. Ciuffi, H. Marshall et al., Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection, PLoS Pathogens, vol.74, issue.6, pp.60-16789841, 2006.
DOI : 10.1371/journal.ppat.0020060.st003

R. Mitchell, B. Beitzel, A. Schroder, P. Shinn, H. Chen et al., Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences, PLoS Biology, vol.100, issue.8, p.234, 2004.
DOI : 10.1371/journal.pbio.0020234.sd002

URL : http://doi.org/10.1371/journal.pbio.0020234

A. Schroder, P. Shinn, H. Chen, C. Berry, J. Ecker et al., HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots, Cell, vol.110, issue.4, pp.521-530, 2002.
DOI : 10.1016/S0092-8674(02)00864-4

X. Wu, Y. Li, B. Crise, S. Burgess, A. Henderson et al., Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration, Science, vol.300, issue.5626, pp.1749-51, 2003.
DOI : 10.1126/science.1083413

M. Lafave, G. Varshney, D. Gildea, T. Wolfsberg, A. Baxevanis et al., MLV integration site selection is driven by strong enhancers and active promoters, Nucleic Acids Research, vol.42, issue.7, pp.4257-69, 2014.
DOI : 10.1093/nar/gkt1399

S. Roth, N. Malani, and F. Bushman, Gammaretroviral Integration into Nucleosomal Target DNA In Vivo, Journal of Virology, vol.85, issue.14, pp.7393-401, 2011.
DOI : 10.1128/JVI.00635-11

D. Nunzio and F. , New insights in the role of nucleoporins: A bridge leading to concerted steps from HIV-1 nuclear entry until integration, Virus Research, vol.178, issue.2, pp.187-96003, 2013.
DOI : 10.1016/j.virusres.2013.09.003

X. Wu, Y. Li, B. Crise, S. Burgess, and D. Munroe, Weak Palindromic Consensus Sequences Are a Common Feature Found at the Integration Target Sites of Many Retroviruses, Journal of Virology, vol.79, issue.8, pp.5211-5215, 2005.
DOI : 10.1128/JVI.79.8.5211-5214.2005

E. Serrao, L. Krishnan, M. Shun, X. Li, P. Cherepanov et al., Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding, Nucleic Acids Research, vol.42, issue.8, pp.5164-76, 2014.
DOI : 10.1093/nar/gku136

G. Maertens, S. Hare, and P. Cherepanov, The mechanism of retroviral integration from X-ray structures of its key intermediates, Nature, vol.14, issue.7321, pp.326-335, 2010.
DOI : 10.1038/nature09517

F. Michel, C. Crucifix, F. Granger, S. Eiler, J. Mouscadet et al., Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor, The EMBO Journal, vol.269, issue.7, pp.980-9141, 2009.
DOI : 10.1073/pnas.93.24.13659

URL : https://hal.archives-ouvertes.fr/inserm-00384501

C. Cattoglio, D. Pellin, E. Rizzi, G. Maruggi, G. Corti et al., High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors, Blood, vol.116, issue.25, pp.5507-5524, 2010.
DOI : 10.1182/blood-2010-05-283523

G. Wang, A. Ciuffi, J. Leipzig, C. Berry, and F. Bushman, HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications, Genome Research, vol.17, issue.8, pp.1186-94, 2007.
DOI : 10.1101/gr.6286907

D. Pruss, F. Bushman, and A. Wolffe, Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core., Proceedings of the National Academy of Sciences, vol.91, issue.13, pp.5913-5920, 1994.
DOI : 10.1073/pnas.91.13.5913

P. Pryciak, H. Varmus, and . Nucleosomes, Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection, Cell, vol.69, issue.5, pp.769-80, 1992.
DOI : 10.1016/0092-8674(92)90289-O

H. Muller and H. Varmus, DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes, The EMBO journal, vol.13, pp.4704-4718, 1994.

D. Pruss, R. Reeves, F. Bushman, A. Wolffe, S. Carteau et al., The influence of DNA and nucleosome structure on integration events directed by HIV integrase, J Biol Chem, vol.269, issue.40, pp.25031-25072, 1994.

Y. Botbol, N. Raghavendra, S. Rahman, A. Engelman, and M. Lavigne, Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro, Nucleic Acids Research, vol.36, issue.4, pp.1237-1283, 2008.
DOI : 10.1093/nar/gkm1127

P. Lesbats, Y. Botbol, G. Chevereau, C. Vaillant, C. Calmels et al., Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient in vitro Integration into Stable Nucleosomes, PLoS Pathogens, vol.16, issue.2, pp.1001280-3037357, 2011.
DOI : 10.1371/journal.ppat.1001280.s010

URL : https://hal.archives-ouvertes.fr/hal-00594715

K. Taganov, I. Cuesta, R. Daniel, L. Cirillo, R. Katz et al., Integrase-Specific Enhancement and Suppression of Retroviral DNA Integration by Compacted Chromatin Structure In Vitro, Journal of Virology, vol.78, issue.11, pp.5848-55, 2004.
DOI : 10.1128/JVI.78.11.5848-5855.2004

M. Llano, D. Saenz, A. Meehan, P. Wongthida, M. Peretz et al., An Essential Role for LEDGF/p75 in HIV Integration, Science, vol.314, issue.5798, p.16959972, 2006.
DOI : 10.1126/science.1132319

P. Cherepanov and . Ledgf, p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic acids research, pp.113-137, 2007.
DOI : 10.1093/nar/gkl885

M. Llano, M. Vanegas, N. Hutchins, D. Thompson, S. Delgado et al., Identification and Characterization of the Chromatin-binding Domains of the HIV-1 Integrase Interactor LEDGF/p75, Journal of Molecular Biology, vol.360, issue.4, p.16793062, 2006.
DOI : 10.1016/j.jmb.2006.04.073

H. Marshall, R. K. Berry, C. Llano, M. Sutherland, H. Saenz et al., Role of PSIP1/LEDGF/p75 in Lentiviral Infectivity and Integration Targeting, PSIP1/LEDGF/p75 in Lentiviral Infectivity and Integration Targeting, pp.1340-18092005, 2007.
DOI : 10.1371/journal.pone.0001340.s003

M. Shun, N. Ragahvendra, N. Vandergraaf, J. Daigle, S. Hughes et al., LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes & Development, vol.21, issue.14, pp.1767-78, 2007.
DOI : 10.1101/gad.1565107

R. Schrijvers, D. Rijck, J. Demeulemeester, J. Adachi, N. Vets et al., LEDGF/p75-indepen- dent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs

F. Turlure, G. Maertens, S. Rahman, P. Cherepanov, and A. Engelman, A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo, Nucleic Acids Research, vol.34, issue.5, pp.1663-75, 2006.
DOI : 10.1093/nar/gkl052

P. Cherepanov, G. Maertens, P. Proost, B. Devreese, J. Van-beeumen et al., HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells, Journal of Biological Chemistry, vol.278, issue.1, pp.372-81, 2003.
DOI : 10.1074/jbc.M209278200

P. Cherepanov, E. Devroe, P. Silver, and A. Engelman, Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase, Journal of Biological Chemistry, vol.279, issue.47, pp.48883-92, 2004.
DOI : 10.1074/jbc.M406307200

K. Pandey, S. Sinha, and D. Grandgenett, Transcriptional Coactivator LEDGF/p75 Modulates Human Immunodeficiency Virus Type 1 Integrase-Mediated Concerted Integration, Journal of Virology, vol.81, issue.8, pp.3969-79, 2007.
DOI : 10.1128/JVI.02322-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866116

S. Hare, M. Shun, S. Gupta, E. Valkov, A. Engelman et al., A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75, PLoS Pathogens, vol.81, issue.1, p.2606027, 2009.
DOI : 10.1371/journal.ppat.1000259.s005

J. Kessl, M. Li, M. Ignatov, N. Shkriabai, J. Eidahl et al., FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75, Nucleic Acids Research, vol.39, issue.20, pp.9009-9031, 2011.
DOI : 10.1093/nar/gkr581

B. Maillot, N. Levy, S. Eiler, C. Crucifix, F. Granger et al., Structural and Functional Role of INI1 and LEDGF in the HIV-1 Preintegration Complex, PLoS ONE, vol.296, issue.4, pp.60734-3623958, 2013.
DOI : 10.1371/journal.pone.0060734.s012

URL : https://hal.archives-ouvertes.fr/hal-01101113

M. Shun, Y. Botbol, X. Li, D. Nunzio, F. Daigle et al., Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity, Journal of Virology, vol.82, issue.23, pp.11555-6701561, 2008.
DOI : 10.1128/JVI.01561-08

J. Eidahl, B. Crowe, J. North, C. Mckee, N. Shkriabai et al., Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes, Nucleic Acids Research, vol.41, issue.6, pp.3924-3960, 2013.
DOI : 10.1093/nar/gkt074

M. Pradeepa, H. Sutherland, J. Ule, G. Grimes, and W. Bickmore, Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing, PLoS Genetics, vol.122, issue.5, pp.1002717-3355077, 2012.
DOI : 10.1371/journal.pgen.1002717.s004

R. Van-nuland, F. Van-schaik, M. Simonis, S. Van-heesch, E. Cuppen et al., Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain, Epigenetics & Chromatin, vol.6, issue.1, pp.12-23656834, 2013.
DOI : 10.1038/nprot.2007.406

J. De-rijck, C. De-kogel, J. Demeulemeester, S. Vets, E. Ashkar et al., The BET Family of Proteins Targets Moloney Murine Leukemia Virus Integration near Transcription Start Sites, Cell Reports, vol.5, issue.4, pp.886-94040, 2013.
DOI : 10.1016/j.celrep.2013.09.040

S. Gupta, T. Maetzig, G. Maertens, A. Sharif, M. Rothe et al., Bromo- and Extraterminal Domain Chromatin Regulators Serve as Cofactors for Murine Leukemia Virus Integration, Journal of Virology, vol.87, issue.23, pp.12721-12757, 2013.
DOI : 10.1128/JVI.01942-13

A. Sharma, R. Larue, M. Plumb, N. Malani, F. Male et al., BET proteins promote efficient murine leukemia virus integration at transcription start sites, Proceedings of the National Academy of Sciences, vol.110, issue.29, pp.12036-12077, 2013.
DOI : 10.1073/pnas.1307157110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718171

M. Benleulmi, J. Matysiak, D. Henriquez, C. Vaillant, P. Lesbats et al., Intasome architecture and chromatin density modulate retroviral integration into nucleosome, Retrovirology, vol.12, issue.1, pp.13-25807893, 2015.
DOI : 10.1101/gad.872801

URL : https://hal.archives-ouvertes.fr/pasteur-01416843

D. Schones and K. Zhao, Genome-wide approaches to studying chromatin modifications, Nature Reviews Genetics, vol.27, issue.3, pp.179-91, 2008.
DOI : 10.1038/nrg2270

A. Valouev, S. Johnson, S. Boyd, C. Smith, A. Fire et al., Determinants of nucleosome organization in primary human cells, Nature, vol.304, issue.7352, pp.516-536, 2011.
DOI : 10.1038/nature10002

G. Chevereau, A. Arneodo, and C. Vaillant, Influence of the genomic sequence on the primary structure of chromatin Frontiers in Life Science, pp.29-68, 2011.

S. Sif, A. Saurin, A. Imbalzano, and R. Kingston, Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes, Genes & Development, vol.15, issue.5, pp.603-621, 2001.
DOI : 10.1101/gad.872801

J. Workman, I. Taylor, R. Kingston, and R. Roeder, Chapter 16 Control of Class II Gene Transcription during in Vitro Nucleosome Assembly, Methods Cell Biol, vol.35, pp.419-466, 1991.
DOI : 10.1016/S0091-679X(08)60582-8

M. Li and R. Craigie, Nucleoprotein complex intermediates in HIV-1 integration, Methods, vol.47, issue.4, pp.237-279, 2009.
DOI : 10.1016/j.ymeth.2009.02.001

J. Henikoff, J. Belsky, K. Krassovsky, D. Macalpine, and S. Henikoff, Epigenome characterization at single base-pair resolution, Proceedings of the National Academy of Sciences, vol.108, issue.45, pp.18318-18341, 2011.
DOI : 10.1073/pnas.1110731108

J. Percus, Equilibrium state of a classical fluid of hard rods in an external field, Journal of Statistical Physics, vol.21, issue.6, p.505, 1976.
DOI : 10.1007/BF01020803

G. Chevereau, L. Palmeira, C. Thermes, A. Arneodo, and C. Vaillant, Thermodynamics of intragenic nucleosome ordering. Physical review letters, Epub, vol.10313, issue.1811, p.188103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00539346

P. Milani, G. Chevereau, C. Vaillant, B. Audit, Z. Haftek-terreau et al., Nucleosome positioning by genomic excluding-energy barriers, Proceedings of the National Academy of Sciences, vol.106, issue.52, pp.22257-62, 2009.
DOI : 10.1073/pnas.0909511106

C. Vaillant, L. Palmeira, G. Chevereau, B. Audit, Y. Aubenton-carafa et al., A novel strategy of transcription regulation by intragenic nucleosome ordering, Genome Research, vol.20, issue.1, pp.59-67, 2009.
DOI : 10.1101/gr.096644.109

URL : https://hal.archives-ouvertes.fr/hal-00539428

S. Balasubramanian, F. Xu, and W. Olson, DNA Sequence-Directed Organization of Chromatin: Structure-Based Computational Analysis of Nucleosome-Binding Sequences, Biophysical Journal, vol.96, issue.6, pp.2245-60, 2009.
DOI : 10.1016/j.bpj.2008.11.040

B. Marini, A. Kertesz-farkas, H. Ali, B. Lucic, K. Lisek et al., Nuclear architecture dictates HIV-1 integration site selection, Nature, vol.138, issue.7551, pp.14226-14226
DOI : 10.1038/nature14226

C. Vaillant, B. Audit, and A. Arneodo, Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Physical review letters, pp.218103-18233262, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00337710

J. Allan, R. Fraser, T. Owen-hughes, and D. Keszenman-pereyra, Micrococcal Nuclease Does Not Substantially Bias Nucleosome Mapping, Journal of Molecular Biology, vol.417, issue.3, pp.152-64043, 2012.
DOI : 10.1016/j.jmb.2012.01.043

A. Faure, C. Calmels, C. Desjobert, M. Castroviejo, A. Caumont-sarcos et al., HIV-1 integrase crosslinked oligomers are active in vitro, Nucleic Acids Research, vol.33, issue.3, pp.977-86, 2005.
DOI : 10.1093/nar/gki241

E. Brin and J. Leis, HIV-1 Integrase Interaction with U3 and U5 Terminal Sequences in Vitro Defined Using Substrates with Random Sequences, Journal of Biological Chemistry, vol.277, issue.21, pp.18357-64, 2002.
DOI : 10.1074/jbc.M201354200

E. Brin and J. Leis, Changes in the Mechanism of DNA Integration in Vitro Induced by Base Substitutions in the HIV-1 U5 and U3 Terminal Sequences, Journal of Biological Chemistry, vol.277, issue.13, pp.10938-10986, 2002.
DOI : 10.1074/jbc.M108116200

S. Carteau, R. Gorelick, and F. Bushman, Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein, J Virol. PMID, vol.7310, issue.8, pp.6670-6679, 1999.

G. Goodarzi, G. Im, K. Brackmann, and D. Grandgenett, Concerted integration of retrovirus-like DNA by human immunodeficiency virus type 1 integrase, J Virol. PMID, vol.69, issue.10, pp.6090-6097, 1995.

E. Segal, Y. Fondufe-mittendorf, L. Chen, A. Thastrom, Y. Field et al., A genomic code for nucleosome positioning, Nature, vol.11, issue.7104, pp.772-780, 2006.
DOI : 10.1016/j.jmb.2004.03.032

E. Segal and J. Widom, What controls nucleosome positions? Trends Genet, pp.335-378, 2009.
DOI : 10.1016/j.tig.2009.06.002

A. Thastrom, P. Lowary, H. Widlund, H. Cao, M. Kubista et al., Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences, Journal of Molecular Biology, vol.288, issue.2, pp.213-242, 1999.
DOI : 10.1006/jmbi.1999.2686

A. Hughes, Y. Jin, O. Rando, and K. Struhl, A Functional Evolutionary Approach to Identify Determinants of Nucleosome Positioning: A Unifying Model for Establishing the Genome-wide Pattern, Molecular Cell, vol.48, issue.1, pp.5-15, 2012.
DOI : 10.1016/j.molcel.2012.07.003

Z. Zhang, C. Wippo, M. Wal, E. Ward, P. Korber et al., A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome, Science, vol.332, issue.6032, pp.977-80977, 2011.
DOI : 10.1126/science.1200508

B. Sexton, D. Avey, B. Druliner, J. Fincher, D. Vera et al., The spring-loaded genome: Nucleosome redistributions are widespread, transient, and DNA-directed, Genome Research, vol.24, issue.2, pp.251-260, 2014.
DOI : 10.1101/gr.160150.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912415

M. Lelek, N. Casartelli, D. Pellin, E. Rizzi, P. Souque et al., Chromatin organization at the nuclear pore favours HIV replication, Nature Communications, vol.5, p.6483, 2015.
DOI : 10.1038/ncomms7483

M. Simon, F. Chu, L. Racki, C. Cruz, A. Burlingame et al., The Site-Specific Installation of Methyl-Lysine Analogs into Recombinant Histones, Cell, vol.128, issue.5, pp.1003-1015, 2007.
DOI : 10.1016/j.cell.2006.12.041

M. Morchikh, M. Naughtin, D. Nunzio, F. Xavier, J. Charneau et al., TOX4 and NOVA1 Proteins Are Partners of the LEDGF PWWP Domain and Affect HIV-1 Replication, PLoS ONE, vol.440, issue.11, pp.81217-3842248, 2013.
DOI : 10.1371/journal.pone.0081217.s005

URL : https://hal.archives-ouvertes.fr/pasteur-01416848

M. Pradeepa, G. Grimes, G. Taylor, H. Sutherland, and W. Bickmore, gene expression by recruiting both trithorax and polycomb group proteins, Nucleic Acids Research, vol.42, issue.14, pp.9021-9053, 2014.
DOI : 10.1093/nar/gku647

A. Yokoyama and M. Cleary, Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer cell, pp.36-46, 2008.
DOI : 10.1016/j.ccr.2008.05.003

URL : http://doi.org/10.1016/j.ccr.2008.05.003

R. Rohs, J. X. West, S. Joshi, R. Honig, B. Mann et al., Origins of Specificity in Protein-DNA Recognition, Annual Review of Biochemistry, vol.79, issue.1, pp.233-69, 2010.
DOI : 10.1146/annurev-biochem-060408-091030

V. Miele, C. Vaillant, Y. Aubenton-carafa, C. Thermes, and T. Grange, DNA physical properties determine nucleosome occupancy from yeast to fly, Nucleic Acids Research, vol.36, issue.11, pp.3746-56, 2008.
DOI : 10.1093/nar/gkn262

URL : https://hal.archives-ouvertes.fr/hal-00428131