RAG1 and RAG2 Form a Stable Postcleavage Synaptic Complex with DNA Containing Signal Ends in V(D)J Recombination, Cell, vol.89, issue.1, pp.43-53, 1997. ,
DOI : 10.1016/S0092-8674(00)80181-6
Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system, Nature, vol.394, pp.744-751, 1998. ,
XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining, Cell, vol.124, issue.2, pp.301-313, 2006. ,
DOI : 10.1016/j.cell.2005.12.031
Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining, Molecular Cell, vol.28, issue.6, pp.1093-1101, 2007. ,
DOI : 10.1016/j.molcel.2007.10.024
Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways, Nucleic Acids Research, vol.38, issue.9, pp.2944-2954, 2010. ,
DOI : 10.1093/nar/gkp1252
The Mechanism and Regulation of Chromosomal V(D)J Recombination, Cell, vol.109, issue.2, pp.45-55, 2002. ,
DOI : 10.1016/S0092-8674(02)00675-X
Lymphocyte Development: Integration of DNA Damage Response Signaling, Adv. Immunol, vol.116, pp.175-204, 2012. ,
DOI : 10.1016/B978-0-12-394300-2.00006-5
RAG-induced DNA double-strand breaks signal through Pim2 to promote pre???B cell survival and limit proliferation, The Journal of Experimental Medicine, vol.217, issue.1, pp.11-17, 2012. ,
DOI : 10.1038/nrm2308
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260864
RAG-mediated DNA double-strand breaks activate a cell type???specific checkpoint to inhibit pre???B cell receptor signals, The Journal of Experimental Medicine, vol.10, issue.2, pp.209-223, 2016. ,
DOI : 10.1002/eji.200838323
B Lineage???specific Regulation of V(D)J Recombinase Activity Is Established in Common Lymphoid Progenitors, The Journal of Experimental Medicine, vol.8, issue.4, pp.491-502, 2004. ,
DOI : 10.1016/S1074-7613(00)80506-3
ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, pp.466-470, 2006. ,
DOI : 10.1038/nature04866
DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes, Nature, vol.22, issue.7223, pp.819-823, 2008. ,
DOI : 10.1038/nature07392
Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly, Cell, vol.124, issue.2, pp.260-262, 2006. ,
DOI : 10.1016/j.cell.2005.12.030
Not All DDRs Are Created Equal: Non-Canonical DNA Damage Responses, Cell, vol.162, issue.5, pp.944-947, 2015. ,
DOI : 10.1016/j.cell.2015.08.006
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560361
The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis, Cellular and Molecular Life Sciences (CMLS), vol.54, issue.8, pp.880-891, 1998. ,
DOI : 10.1007/s000180050216
Cernunnos Interacts with the XRCC4{middle dot}DNA-ligase IV Complex and Is Homologous to the Yeast Nonhomologous End-joining Factor Nej1, Journal of Biological Chemistry, vol.281, issue.20, pp.13857-13860, 2006. ,
DOI : 10.1074/jbc.C500473200
Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination, Genes & Development, vol.30, issue.8, pp.909-917, 2016. ,
DOI : 10.1101/gad.278432.116
Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo, Molecular and Cellular Biology, vol.26, issue.4, pp.1558-1568, 2006. ,
DOI : 10.1128/MCB.26.4.1558-1568.2006
A New Take on V(D)J Recombination: Transcription Driven Nuclear and Chromatin Reorganization in Rag-Mediated Cleavage, Frontiers in Immunology, vol.4, p.423, 2013. ,
DOI : 10.3389/fimmu.2013.00423
Higher-Order Looping and Nuclear Organization of Tcra Facilitate Targeted RAG Cleavage and Regulated Rearrangement in Recombination Centers, Cell Reports, vol.3, issue.2, pp.359-370, 2013. ,
DOI : 10.1016/j.celrep.2013.01.024
URL : https://hal.archives-ouvertes.fr/pasteur-01471693
The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage, Nature Communications, vol.96, 2013. ,
DOI : 10.1073/pnas.1102223108
URL : https://hal.archives-ouvertes.fr/pasteur-01471697
Rag mutations reveal robust alternative end joining, Nature, vol.55, issue.7161, pp.483-486, 2007. ,
DOI : 10.1038/nature06168
RAG2???s Acidic Hinge Restricts Repair-Pathway Choice and Promotes Genomic Stability, Cell Reports, vol.4, issue.5, pp.870-878, 2013. ,
DOI : 10.1016/j.celrep.2013.07.041
URL : https://hal.archives-ouvertes.fr/pasteur-01471703
XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair, Cell Death and Differentiation, vol.27, issue.6, pp.890-897, 2015. ,
DOI : 10.1371/journal.pone.0007016
RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination, Nucleic Acids Research, vol.36, issue.18, pp.5750-5762, 2008. ,
DOI : 10.1093/nar/gkn553
Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage, Annual Review of Genetics, vol.47, issue.1, pp.433-455, 2013. ,
DOI : 10.1146/annurev-genet-110711-155540
URL : https://hal.archives-ouvertes.fr/pasteur-01471700
The RAG2 C terminus suppresses genomic instability and lymphomagenesis, Nature, vol.101, issue.7336, pp.119-123, 2011. ,
DOI : 10.1038/nature09755
URL : https://hal.archives-ouvertes.fr/pasteur-01471708
The C-terminal portion of RAG2 protects against transposition in vitro, The EMBO Journal, vol.22, issue.8, pp.1931-1938, 2003. ,
DOI : 10.1093/emboj/cdg184
The origins of the Rag genes???From transposition to V(D)J recombination, Seminars in Immunology, vol.22, issue.1, pp.10-16, 2010. ,
DOI : 10.1016/j.smim.2009.11.004
V(D)J Recombination: RAG Proteins, Repair Factors, and Regulation, Annual Review of Biochemistry, vol.71, issue.1, pp.101-132, 2002. ,
DOI : 10.1146/annurev.biochem.71.090501.150203
XRCC4 Protein Interactions with XRCC4-like Factor (XLF) Create an Extended Grooved Scaffold for DNA Ligation and Double Strand Break Repair, Journal of Biological Chemistry, vol.286, issue.37, pp.32638-32650, 2011. ,
DOI : 10.1074/jbc.M111.272641
The Response to and Repair of RAG-Mediated DNA Double-Strand Breaks, Annual Review of Immunology, vol.30, issue.1, pp.175-202, 2012. ,
DOI : 10.1146/annurev-immunol-030409-101320
RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci, Nature Immunology, vol.17, issue.6, pp.655-664, 2009. ,
DOI : 10.1038/ni.1735
A Stable RAG1???RAG2???DNA Complex That Is Active in V(D)J Cleavage, Cell, vol.88, issue.1, pp.65-72, 1997. ,
DOI : 10.1016/S0092-8674(00)81859-0
DNA Transposition by the RAG1 and RAG2 Proteins, Cell, vol.94, issue.4, pp.463-470, 1998. ,
DOI : 10.1016/S0092-8674(00)81587-1
Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes, Nature Communications, vol.72, p.5896, 2014. ,
DOI : 10.1080/10635150390235520
Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination, Cell, vol.166, issue.1, pp.102-114, 2016. ,
DOI : 10.1016/j.cell.2016.05.032
URL : https://hal.archives-ouvertes.fr/hal-01486940
The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci, Cell, vol.141, issue.3, pp.419-431, 2010. ,
DOI : 10.1016/j.cell.2010.03.010
The roles of the RAG1 and RAG2 ???non-core??? regions in V(D)J recombination and lymphocyte development, Archivum Immunologiae et Therapiae Experimentalis, vol.102, issue.2, pp.105-116, 2009. ,
DOI : 10.1007/s00005-009-0011-3
Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon, Biology Direct, vol.59, issue.3, p.20, 2015. ,
DOI : 10.1186/s13062-015-0055-8
Novel molecular mechanism for generating NK-cell fitness and memory, European Journal of Immunology, vol.447, issue.7, pp.1906-1915, 2015. ,
DOI : 10.1002/eji.201445339
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561546
The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells, Cell, vol.159, issue.1, pp.94-107, 2014. ,
DOI : 10.1016/j.cell.2014.08.026
Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways, Annual Review of Genetics, vol.48, issue.1, pp.187-214, 2014. ,
DOI : 10.1146/annurev-genet-120213-092304
Crystal structure of the V(D)J recombinase RAG1???RAG2, Crystal structure of the V(D)J recombinase RAG1-RAG2, pp.507-511, 2015. ,
DOI : 10.1038/nature14174
Functional overlaps between XLF and the ATM-dependent DNA double strand break response, DNA Repair, vol.16, pp.11-22, 2014. ,
DOI : 10.1016/j.dnarep.2014.01.010
PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line, Proceedings of the National Academy of Sciences, vol.113, issue.38, pp.10619-10624, 2016. ,
DOI : 10.1073/pnas.1611882113
ATM controls meiotic double-strand-break formation, Nature, vol.6, issue.7372, pp.237-240, 2011. ,
DOI : 10.1038/nature10508
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213282
RAG Proteins Shepherd Double-Strand Breaks to a Specific Pathway, Suppressing Error-Prone Repair, but RAG Nicking Initiates Homologous Recombination, Cell, vol.117, issue.2, pp.171-184, 2004. ,
DOI : 10.1016/S0092-8674(04)00301-0
V(D)J Recombination: Orchestrating Diversity without Damage, Encycl. Cell Biol, vol.3, pp.550-566, 2016. ,
DOI : 10.1016/B978-0-12-394447-4.30073-6
RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair, Nature Communications, vol.3, 2016. ,
DOI : 10.1093/bioinformatics/btr670
URL : https://hal.archives-ouvertes.fr/pasteur-01295756
Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination, Cell Reports, vol.16, issue.11, pp.2967-2979, 2016. ,
DOI : 10.1016/j.celrep.2016.08.069
URL : https://hal.archives-ouvertes.fr/pasteur-01369781
A Conserved Degradation Signal Regulates RAG-2 Accumulation during Cell Division and Links V(D)J Recombination to the Cell Cycle, Immunity, vol.5, issue.6, pp.575-589, 1996. ,
DOI : 10.1016/S1074-7613(00)80272-1
Lymphocyte-Specific Compensation for XLF/Cernunnos End-Joining Functions in V(D)J Recombination, Molecular Cell, vol.31, issue.5, pp.631-640, 2008. ,
DOI : 10.1016/j.molcel.2008.07.017
Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ, The EMBO Journal, vol.40, issue.1, pp.290-300, 2008. ,
DOI : 10.1038/sj.emboj.7601942
The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway, Annual Review of Biochemistry, vol.79, issue.1, pp.181-211, 2010. ,
DOI : 10.1146/annurev.biochem.052308.093131
The origins of vertebrate adaptive immunity, Nature Reviews Immunology, vol.311, issue.8, pp.543-553, 2010. ,
DOI : 10.1038/nri2807
A Plant Homeodomain in Rag-2 that Binds Hypermethylated Lysine 4 of Histone H3 Is Necessary for Efficient Antigen-Receptor-Gene Rearrangement, Immunity, vol.27, issue.4, pp.561-571, 2007. ,
DOI : 10.1016/j.immuni.2007.09.005
An Autoregulatory Mechanism Imposes Allosteric Control on the V(D)J Recombinase by Histone H3 Methylation, Cell Reports, vol.10, issue.1, pp.29-38, 2015. ,
DOI : 10.1016/j.celrep.2014.12.001
RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2 Epub ahead of print, Nucleic Acids Res, 2016. ,
RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination, RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination, pp.1106-1110, 2007. ,
DOI : 10.1038/nature06431
A Streamlined Method for Detecting Structural Variants in Cancer Genomes by Short Read Paired-End Sequencing, PLoS ONE, vol.12, issue.10, p.48314, 2012. ,
DOI : 10.1371/journal.pone.0048314.s001
URL : https://hal.archives-ouvertes.fr/pasteur-01471706
Off-Target V(D)J Recombination Drives Lymphomagenesis and Is Escalated by Loss of the Rag2 C Terminus, Cell Reports, vol.12, issue.11, pp.1842-1852, 2015. ,
DOI : 10.1016/j.celrep.2015.08.034
PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair, Science, vol.347, issue.6218, pp.185-188, 2015. ,
DOI : 10.1126/science.1261971
RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination, Science, vol.248, issue.4962, pp.1517-1523, 1990. ,
DOI : 10.1126/science.2360047
Genomic instability due to V(D)J recombination-associated transposition, Genes & Development, vol.20, issue.12, pp.1575-1582, 2006. ,
DOI : 10.1101/gad.1432706
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482478
Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair, Proc. Natl. Acad. Sci. U. S. A. 112, pp.2575-2584, 2015. ,
DOI : 10.1073/pnas.1420115112
XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation, Nucleic Acids Research, vol.37, issue.2, pp.482-492, 2009. ,
DOI : 10.1093/nar/gkn957
URL : http://doi.org/10.1093/nar/gkn957
A new light on the meiotic DSB catalytic complex, Seminars in Cell & Developmental Biology, vol.54, pp.165-176, 2016. ,
DOI : 10.1016/j.semcdb.2016.02.025
URL : https://hal.archives-ouvertes.fr/hal-01320053
Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining, Proceedings of the National Academy of Sciences, vol.108, issue.31, pp.12663-12668, 2011. ,
DOI : 10.1073/pnas.1100758108
URL : https://hal.archives-ouvertes.fr/hal-00613194
V(D)J Recombination: Mechanism, Errors, and Fidelity, Microbiology Spectrum, vol.2, issue.6, 2014. ,
DOI : 10.1128/microbiolspec.MDNA3-0041-2014
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089068
Restraining the V(D)J recombinase, Nature Reviews Immunology, vol.3, issue.8, pp.656-666, 2003. ,
DOI : 10.1038/nri1152
XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation, Molecular and Cellular Biology, vol.35, issue.17, pp.3017-302801503, 2015. ,
DOI : 10.1128/MCB.01503-14
URL : https://hal.archives-ouvertes.fr/hal-01456279
Expression and V(D)J recombination activity of mutated RAG-1 proteins, Nucleic Acids Research, vol.21, issue.24, pp.5644-5650, 1993. ,
DOI : 10.1093/nar/21.24.5644
Definition of a core region of RAG-2 that is functional in V(D)J recombination, Nucleic Acids Research, vol.22, issue.10, pp.1805-1809, 1994. ,
DOI : 10.1093/nar/22.10.1805
V(D)J Recombination: Mechanisms of Initiation, Annual Review of Genetics, vol.45, issue.1, pp.167-202, 2011. ,
DOI : 10.1146/annurev-genet-110410-132552
The V(D)J recombination activating gene, RAG-1, Cell, vol.59, issue.6, pp.1035-1048, 1989. ,
DOI : 10.1016/0092-8674(89)90760-5
Increased Accumulation of Hybrid V(D)J Joins in Cells Expressing Truncated versus Full-Length RAGs, Molecular Cell, vol.8, issue.6, pp.1383-1390, 2001. ,
DOI : 10.1016/S1097-2765(01)00423-3
AID-Induced Genotoxic Stress Promotes B Cell Differentiation in the Germinal Center via ATM and LKB1 Signaling, Molecular Cell, vol.39, issue.6, pp.873-885, 2010. ,
DOI : 10.1016/j.molcel.2010.08.019
Regulation of cell differentiation by the DNA damage response, Trends in Cell Biology, vol.21, issue.5, pp.312-319, 2011. ,
DOI : 10.1016/j.tcb.2011.01.004
The ATM protein kinase: regulating the cellular response to genotoxic stress, and more, Nature Reviews Molecular Cell Biology, vol.13, issue.4, pp.197-210, 2013. ,
DOI : 10.4161/cc.23592
Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice, Nucleic Acids Research, vol.32, issue.15, pp.4539-4549, 2004. ,
DOI : 10.1093/nar/gkh778
Regulation and Evolution of the RAG Recombinase, Adv. Immunol, vol.128, pp.1-39, 2015. ,
DOI : 10.1016/bs.ai.2015.07.002
RAG Represents a Widespread Threat to the Lymphocyte Genome, Cell, vol.162, issue.4, pp.751-765, 2015. ,
DOI : 10.1016/j.cell.2015.07.009
Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2, The EMBO Journal, vol.22, issue.8, pp.1922-1930, 2003. ,
DOI : 10.1093/emboj/cdg185
Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends, Proceedings of the National Academy of Sciences, vol.104, issue.19, pp.7851-7856, 2007. ,
DOI : 10.1073/pnas.0702620104
Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway, Nature Communications, vol.6, p.6233, 2015. ,
DOI : 10.1038/emboj.2012.304
Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination, Proc. Natl. Acad. Sci. U. S. A. 111, pp.988-997, 2014. ,
DOI : 10.1073/pnas.1320486111
URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964074
ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks, Nature, vol.296, issue.7329, pp.250-254, 2011. ,
DOI : 10.1038/nature09604
Coupling of V(D)J Recombination to the Cell Cycle Suppresses Genomic Instability and Lymphoid Tumorigenesis, Immunity, vol.34, issue.2, pp.163-174, 2011. ,
DOI : 10.1016/j.immuni.2011.02.003
An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1, Proceedings of the National Academy of Sciences, vol.111, issue.1, pp.397-402, 2014. ,
DOI : 10.1073/pnas.1318843111