A. Agrawal and D. G. Schatz, RAG1 and RAG2 Form a Stable Postcleavage Synaptic Complex with DNA Containing Signal Ends in V(D)J Recombination, Cell, vol.89, issue.1, pp.43-53, 1997.
DOI : 10.1016/S0092-8674(00)80181-6

A. Agrawal, Q. M. Eastman, and D. G. Schatz, Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system, Nature, vol.394, pp.744-751, 1998.

P. Ahnesorg, P. Smith, and S. P. Jackson, XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining, Cell, vol.124, issue.2, pp.301-313, 2006.
DOI : 10.1016/j.cell.2005.12.031

S. N. Andres, M. Modesti, C. J. Tsai, G. Chu, and M. S. Junop, Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining, Molecular Cell, vol.28, issue.6, pp.1093-1101, 2007.
DOI : 10.1016/j.molcel.2007.10.024

S. M. Arnal, A. J. Holub, S. S. Salus, and D. B. Roth, Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways, Nucleic Acids Research, vol.38, issue.9, pp.2944-2954, 2010.
DOI : 10.1093/nar/gkp1252

C. H. Bassing, W. Swat, and F. W. Alt, The Mechanism and Regulation of Chromosomal V(D)J Recombination, Cell, vol.109, issue.2, pp.45-55, 2002.
DOI : 10.1016/S0092-8674(02)00675-X

J. J. Bednarski and B. P. Sleckman, Lymphocyte Development: Integration of DNA Damage Response Signaling, Adv. Immunol, vol.116, pp.175-204, 2012.
DOI : 10.1016/B978-0-12-394300-2.00006-5

J. J. Bednarski, A. Nickless, D. Bhattacharya, R. H. Amin, M. S. Schlissel et al., RAG-induced DNA double-strand breaks signal through Pim2 to promote pre???B cell survival and limit proliferation, The Journal of Experimental Medicine, vol.217, issue.1, pp.11-17, 2012.
DOI : 10.1038/nrm2308

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260864

J. J. Bednarski, R. Pandey, E. Schulte, L. S. White, B. R. Chen et al., RAG-mediated DNA double-strand breaks activate a cell type???specific checkpoint to inhibit pre???B cell receptor signals, The Journal of Experimental Medicine, vol.10, issue.2, pp.209-223, 2016.
DOI : 10.1002/eji.200838323

L. Borghesi, L. Y. Hsu, J. P. Miller, M. Anderson, L. Herzenberg et al., B Lineage???specific Regulation of V(D)J Recombinase Activity Is Established in Common Lymphoid Progenitors, The Journal of Experimental Medicine, vol.8, issue.4, pp.491-502, 2004.
DOI : 10.1016/S1074-7613(00)80506-3

A. L. Bredemeyer, G. G. Sharma, C. Huang, B. A. Helmink, L. M. Walker et al., ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, pp.466-470, 2006.
DOI : 10.1038/nature04866

A. L. Bredemeyer, B. A. Helmink, C. L. Innes, B. Calderon, L. M. Mcginnis et al., DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes, Nature, vol.22, issue.7223, pp.819-823, 2008.
DOI : 10.1038/nature07392

D. Buck, L. Malivert, R. De-chasseval, A. Barraud, M. C. Fondaneche et al., Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly, Cell, vol.124, issue.2, pp.260-262, 2006.
DOI : 10.1016/j.cell.2005.12.030

R. C. Burgess and T. Misteli, Not All DDRs Are Created Equal: Non-Canonical DNA Damage Responses, Cell, vol.162, issue.5, pp.944-947, 2015.
DOI : 10.1016/j.cell.2015.08.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560361

I. Callebaut and J. P. Mornon, The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis, Cellular and Molecular Life Sciences (CMLS), vol.54, issue.8, pp.880-891, 1998.
DOI : 10.1007/s000180050216

I. Callebaut, L. Malivert, A. Fischer, J. P. Mornon, P. Revy et al., Cernunnos Interacts with the XRCC4{middle dot}DNA-ligase IV Complex and Is Homologous to the Yeast Nonhomologous End-joining Factor Nej1, Journal of Biological Chemistry, vol.281, issue.20, pp.13857-13860, 2006.
DOI : 10.1074/jbc.C500473200

L. M. Carmona, S. D. Fugmann, and D. G. Schatz, Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination, Genes & Development, vol.30, issue.8, pp.909-917, 2016.
DOI : 10.1101/gad.278432.116

M. Chatterji, C. L. Tsai, and D. G. Schatz, Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo, Molecular and Cellular Biology, vol.26, issue.4, pp.1558-1568, 2006.
DOI : 10.1128/MCB.26.4.1558-1568.2006

J. Chaumeil and J. A. Skok, A New Take on V(D)J Recombination: Transcription Driven Nuclear and Chromatin Reorganization in Rag-Mediated Cleavage, Frontiers in Immunology, vol.4, p.423, 2013.
DOI : 10.3389/fimmu.2013.00423

J. Chaumeil, M. Micsinai, P. Ntziachristos, L. Deriano, J. M. Wang et al., Higher-Order Looping and Nuclear Organization of Tcra Facilitate Targeted RAG Cleavage and Regulated Rearrangement in Recombination Centers, Cell Reports, vol.3, issue.2, pp.359-370, 2013.
DOI : 10.1016/j.celrep.2013.01.024

URL : https://hal.archives-ouvertes.fr/pasteur-01471693

J. Chaumeil, M. Micsinai, P. Ntziachristos, D. B. Roth, I. Aifantis et al., The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage, Nature Communications, vol.96, 2013.
DOI : 10.1073/pnas.1102223108

URL : https://hal.archives-ouvertes.fr/pasteur-01471697

B. Corneo, R. L. Wendland, L. Deriano, X. Cui, I. A. Klein et al., Rag mutations reveal robust alternative end joining, Nature, vol.55, issue.7161, pp.483-486, 2007.
DOI : 10.1038/nature06168

M. A. Coussens, R. L. Wendland, L. Deriano, C. R. Lindsay, S. M. Arnal et al., RAG2???s Acidic Hinge Restricts Repair-Pathway Choice and Promotes Genomic Stability, Cell Reports, vol.4, issue.5, pp.870-878, 2013.
DOI : 10.1016/j.celrep.2013.07.041

URL : https://hal.archives-ouvertes.fr/pasteur-01471703

A. Craxton, J. Somers, D. Munnur, R. Jukes-jones, K. Cain et al., XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair, Cell Death and Differentiation, vol.27, issue.6, pp.890-897, 2015.
DOI : 10.1371/journal.pone.0007016

J. D. Curry and M. S. Schlissel, RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination, Nucleic Acids Research, vol.36, issue.18, pp.5750-5762, 2008.
DOI : 10.1093/nar/gkn553

L. Deriano and D. B. Roth, Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage, Annual Review of Genetics, vol.47, issue.1, pp.433-455, 2013.
DOI : 10.1146/annurev-genet-110711-155540

URL : https://hal.archives-ouvertes.fr/pasteur-01471700

L. Deriano, J. Chaumeil, M. Coussens, A. S. Multani, Y. Chou et al., The RAG2 C terminus suppresses genomic instability and lymphomagenesis, Nature, vol.101, issue.7336, pp.119-123, 2011.
DOI : 10.1038/nature09755

URL : https://hal.archives-ouvertes.fr/pasteur-01471708

S. K. Elkin, A. G. Matthews, and M. A. Oettinger, The C-terminal portion of RAG2 protects against transposition in vitro, The EMBO Journal, vol.22, issue.8, pp.1931-1938, 2003.
DOI : 10.1093/emboj/cdg184

S. D. Fugmann, The origins of the Rag genes???From transposition to V(D)J recombination, Seminars in Immunology, vol.22, issue.1, pp.10-16, 2010.
DOI : 10.1016/j.smim.2009.11.004

M. Gellert, V(D)J Recombination: RAG Proteins, Repair Factors, and Regulation, Annual Review of Biochemistry, vol.71, issue.1, pp.101-132, 2002.
DOI : 10.1146/annurev.biochem.71.090501.150203

M. Hammel, M. Rey, Y. Yu, R. S. Mani, S. Classen et al., XRCC4 Protein Interactions with XRCC4-like Factor (XLF) Create an Extended Grooved Scaffold for DNA Ligation and Double Strand Break Repair, Journal of Biological Chemistry, vol.286, issue.37, pp.32638-32650, 2011.
DOI : 10.1074/jbc.M111.272641

B. A. Helmink and B. P. Sleckman, The Response to and Repair of RAG-Mediated DNA Double-Strand Breaks, Annual Review of Immunology, vol.30, issue.1, pp.175-202, 2012.
DOI : 10.1146/annurev-immunol-030409-101320

S. L. Hewitt, B. Yin, Y. Ji, J. Chaumeil, K. Marszalek et al., RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci, Nature Immunology, vol.17, issue.6, pp.655-664, 2009.
DOI : 10.1038/ni.1735

K. Hiom and M. Gellert, A Stable RAG1???RAG2???DNA Complex That Is Active in V(D)J Cleavage, Cell, vol.88, issue.1, pp.65-72, 1997.
DOI : 10.1016/S0092-8674(00)81859-0

K. Hiom, M. Melek, and M. Gellert, DNA Transposition by the RAG1 and RAG2 Proteins, Cell, vol.94, issue.4, pp.463-470, 1998.
DOI : 10.1016/S0092-8674(00)81587-1

S. Huang, Z. Chen, X. Yan, T. Yu, G. Huang et al., Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes, Nature Communications, vol.72, p.5896, 2014.
DOI : 10.1080/10635150390235520

S. Huang, X. Tao, S. Yuan, Y. Zhang, P. Li et al., Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination, Cell, vol.166, issue.1, pp.102-114, 2016.
DOI : 10.1016/j.cell.2016.05.032

URL : https://hal.archives-ouvertes.fr/hal-01486940

Y. Ji, W. Resch, E. Corbett, A. Yamane, R. Casellas et al., The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci, Cell, vol.141, issue.3, pp.419-431, 2010.
DOI : 10.1016/j.cell.2010.03.010

J. M. Jones and C. Simkus, The roles of the RAG1 and RAG2 ???non-core??? regions in V(D)J recombination and lymphocyte development, Archivum Immunologiae et Therapiae Experimentalis, vol.102, issue.2, pp.105-116, 2009.
DOI : 10.1007/s00005-009-0011-3

V. V. Kapitonov and E. V. Koonin, Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon, Biology Direct, vol.59, issue.3, p.20, 2015.
DOI : 10.1186/s13062-015-0055-8

J. M. Karo and J. C. Sun, Novel molecular mechanism for generating NK-cell fitness and memory, European Journal of Immunology, vol.447, issue.7, pp.1906-1915, 2015.
DOI : 10.1002/eji.201445339

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561546

J. M. Karo, D. G. Schatz, and J. C. Sun, The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells, Cell, vol.159, issue.1, pp.94-107, 2014.
DOI : 10.1016/j.cell.2014.08.026

S. Keeney, J. Lange, and N. Mohibullah, Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways, Annual Review of Genetics, vol.48, issue.1, pp.187-214, 2014.
DOI : 10.1146/annurev-genet-120213-092304

M. S. Kim, M. Lapkouski, W. Yang, and M. Gellert, Crystal structure of the V(D)J recombinase RAG1???RAG2, Crystal structure of the V(D)J recombinase RAG1-RAG2, pp.507-511, 2015.
DOI : 10.1038/nature14174

V. Kumar, F. W. Alt, and V. Oksenych, Functional overlaps between XLF and the ATM-dependent DNA double strand break response, DNA Repair, vol.16, pp.11-22, 2014.
DOI : 10.1016/j.dnarep.2014.01.010

V. Kumar, F. W. Alt, and R. L. Frock, PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line, Proceedings of the National Academy of Sciences, vol.113, issue.38, pp.10619-10624, 2016.
DOI : 10.1073/pnas.1611882113

J. Lange, J. Pan, F. Cole, M. P. Thelen, M. Jasin et al., ATM controls meiotic double-strand-break formation, Nature, vol.6, issue.7372, pp.237-240, 2011.
DOI : 10.1038/nature10508

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213282

G. S. Lee, M. B. Neiditch, S. S. Salus, and D. B. Roth, RAG Proteins Shepherd Double-Strand Breaks to a Specific Pathway, Suppressing Error-Prone Repair, but RAG Nicking Initiates Homologous Recombination, Cell, vol.117, issue.2, pp.171-184, 2004.
DOI : 10.1016/S0092-8674(04)00301-0

C. Lescale and L. Deriano, V(D)J Recombination: Orchestrating Diversity without Damage, Encycl. Cell Biol, vol.3, pp.550-566, 2016.
DOI : 10.1016/B978-0-12-394447-4.30073-6

C. Lescale, V. Abramowski, M. Bedora-faure, V. Murigneux, G. Vera et al., RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair, Nature Communications, vol.3, 2016.
DOI : 10.1093/bioinformatics/btr670

URL : https://hal.archives-ouvertes.fr/pasteur-01295756

C. Lescale, H. Lenden-hasse, A. N. Blackford, G. Balmus, J. J. Bianchi et al., Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination, Cell Reports, vol.16, issue.11, pp.2967-2979, 2016.
DOI : 10.1016/j.celrep.2016.08.069

URL : https://hal.archives-ouvertes.fr/pasteur-01369781

Z. Li, D. I. Dordai, J. Lee, and S. Desiderio, A Conserved Degradation Signal Regulates RAG-2 Accumulation during Cell Division and Links V(D)J Recombination to the Cell Cycle, Immunity, vol.5, issue.6, pp.575-589, 1996.
DOI : 10.1016/S1074-7613(00)80272-1

G. Li, F. W. Alt, H. L. Cheng, J. W. Brush, P. H. Goff et al., Lymphocyte-Specific Compensation for XLF/Cernunnos End-Joining Functions in V(D)J Recombination, Molecular Cell, vol.31, issue.5, pp.631-640, 2008.
DOI : 10.1016/j.molcel.2008.07.017

Y. Li, D. Y. Chirgadze, V. M. Bolanos-garcia, B. L. Sibanda, O. R. Davies et al., Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ, The EMBO Journal, vol.40, issue.1, pp.290-300, 2008.
DOI : 10.1038/sj.emboj.7601942

M. R. Lieber, The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway, Annual Review of Biochemistry, vol.79, issue.1, pp.181-211, 2010.
DOI : 10.1146/annurev.biochem.052308.093131

G. W. Litman, J. P. Rast, and S. D. Fugmann, The origins of vertebrate adaptive immunity, Nature Reviews Immunology, vol.311, issue.8, pp.543-553, 2010.
DOI : 10.1038/nri2807

Y. Liu, R. Subrahmanyam, T. Chakraborty, R. Sen, and S. Desiderio, A Plant Homeodomain in Rag-2 that Binds Hypermethylated Lysine 4 of Histone H3 Is Necessary for Efficient Antigen-Receptor-Gene Rearrangement, Immunity, vol.27, issue.4, pp.561-571, 2007.
DOI : 10.1016/j.immuni.2007.09.005

C. Lu, A. Ward, J. Bettridge, Y. Liu, and S. Desiderio, An Autoregulatory Mechanism Imposes Allosteric Control on the V(D)J Recombinase by Histone H3 Methylation, Cell Reports, vol.10, issue.1, pp.29-38, 2015.
DOI : 10.1016/j.celrep.2014.12.001

Y. Maman, G. Teng, R. Seth, S. H. Kleinstein, and D. G. Schatz, RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2 Epub ahead of print, Nucleic Acids Res, 2016.

A. G. Matthews, A. J. Kuo, S. Ramon-maiques, S. Han, K. S. Champagne et al., RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination, RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination, pp.1106-1110, 2007.
DOI : 10.1038/nature06431

M. Mijuskovic, S. M. Brown, Z. Tang, C. R. Lindsay, E. Efstathiadis et al., A Streamlined Method for Detecting Structural Variants in Cancer Genomes by Short Read Paired-End Sequencing, PLoS ONE, vol.12, issue.10, p.48314, 2012.
DOI : 10.1371/journal.pone.0048314.s001

URL : https://hal.archives-ouvertes.fr/pasteur-01471706

M. Mijuskovic, Y. F. Chou, V. Gigi, C. R. Lindsay, O. Shestova et al., Off-Target V(D)J Recombination Drives Lymphomagenesis and Is Escalated by Loss of the Rag2 C Terminus, Cell Reports, vol.12, issue.11, pp.1842-1852, 2015.
DOI : 10.1016/j.celrep.2015.08.034

T. Ochi, A. N. Blackford, J. Coates, S. Jhujh, S. Mehmood et al., PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair, Science, vol.347, issue.6218, pp.185-188, 2015.
DOI : 10.1126/science.1261971

M. A. Oettinger, D. G. Schatz, C. Gorka, and D. Baltimore, RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination, Science, vol.248, issue.4962, pp.1517-1523, 1990.
DOI : 10.1126/science.2360047

Y. V. Reddy, E. J. Perkins, and D. A. Ramsden, Genomic instability due to V(D)J recombination-associated transposition, Genes & Development, vol.20, issue.12, pp.1575-1582, 2006.
DOI : 10.1101/gad.1432706

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482478

D. A. Reid, S. Keegan, A. Leo-macias, G. Watanabe, N. T. Strande et al., Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair, Proc. Natl. Acad. Sci. U. S. A. 112, pp.2575-2584, 2015.
DOI : 10.1073/pnas.1420115112

E. Riballo, L. Woodbine, T. Stiff, S. A. Walker, A. A. Goodarzi et al., XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation, Nucleic Acids Research, vol.37, issue.2, pp.482-492, 2009.
DOI : 10.1093/nar/gkn957

URL : http://doi.org/10.1093/nar/gkn957

T. Robert, N. Vrielynck, C. Mezard, B. De-massy, and M. Grelon, A new light on the meiotic DSB catalytic complex, Seminars in Cell & Developmental Biology, vol.54, pp.165-176, 2016.
DOI : 10.1016/j.semcdb.2016.02.025

URL : https://hal.archives-ouvertes.fr/hal-01320053

V. Ropars, P. Drevet, P. Legrand, S. Baconnais, J. Amram et al., Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining, Proceedings of the National Academy of Sciences, vol.108, issue.31, pp.12663-12668, 2011.
DOI : 10.1073/pnas.1100758108

URL : https://hal.archives-ouvertes.fr/hal-00613194

D. B. Roth, V(D)J Recombination: Mechanism, Errors, and Fidelity, Microbiology Spectrum, vol.2, issue.6, 2014.
DOI : 10.1128/microbiolspec.MDNA3-0041-2014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089068

D. B. Roth, Restraining the V(D)J recombinase, Nature Reviews Immunology, vol.3, issue.8, pp.656-666, 2003.
DOI : 10.1038/nri1152

S. Roy, A. J. De-melo, Y. Xu, S. K. Tadi, A. Negrel et al., XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation, Molecular and Cellular Biology, vol.35, issue.17, pp.3017-302801503, 2015.
DOI : 10.1128/MCB.01503-14

URL : https://hal.archives-ouvertes.fr/hal-01456279

M. J. Sadofsky, J. E. Hesse, J. F. Mcblane, and M. Gellert, Expression and V(D)J recombination activity of mutated RAG-1 proteins, Nucleic Acids Research, vol.21, issue.24, pp.5644-5650, 1993.
DOI : 10.1093/nar/21.24.5644

M. J. Sadofsky, J. E. Hesse, and M. Gellert, Definition of a core region of RAG-2 that is functional in V(D)J recombination, Nucleic Acids Research, vol.22, issue.10, pp.1805-1809, 1994.
DOI : 10.1093/nar/22.10.1805

D. G. Schatz and P. C. Swanson, V(D)J Recombination: Mechanisms of Initiation, Annual Review of Genetics, vol.45, issue.1, pp.167-202, 2011.
DOI : 10.1146/annurev-genet-110410-132552

D. G. Schatz, M. A. Oettinger, and D. Baltimore, The V(D)J recombination activating gene, RAG-1, Cell, vol.59, issue.6, pp.1035-1048, 1989.
DOI : 10.1016/0092-8674(89)90760-5

J. A. Sekiguchi, S. Whitlow, and F. W. Alt, Increased Accumulation of Hybrid V(D)J Joins in Cells Expressing Truncated versus Full-Length RAGs, Molecular Cell, vol.8, issue.6, pp.1383-1390, 2001.
DOI : 10.1016/S1097-2765(01)00423-3

M. H. Sherman, A. I. Kuraishy, C. Deshpande, J. S. Hong, N. A. Cacalano et al., AID-Induced Genotoxic Stress Promotes B Cell Differentiation in the Germinal Center via ATM and LKB1 Signaling, Molecular Cell, vol.39, issue.6, pp.873-885, 2010.
DOI : 10.1016/j.molcel.2010.08.019

M. H. Sherman, C. H. Bassing, and M. A. Teitell, Regulation of cell differentiation by the DNA damage response, Trends in Cell Biology, vol.21, issue.5, pp.312-319, 2011.
DOI : 10.1016/j.tcb.2011.01.004

Y. Shiloh and Y. Ziv, The ATM protein kinase: regulating the cellular response to genotoxic stress, and more, Nature Reviews Molecular Cell Biology, vol.13, issue.4, pp.197-210, 2013.
DOI : 10.4161/cc.23592

S. R. Talukder, D. D. Dudley, F. W. Alt, Y. Takahama, and Y. Akamatsu, Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice, Nucleic Acids Research, vol.32, issue.15, pp.4539-4549, 2004.
DOI : 10.1093/nar/gkh778

G. Teng and D. G. Schatz, Regulation and Evolution of the RAG Recombinase, Adv. Immunol, vol.128, pp.1-39, 2015.
DOI : 10.1016/bs.ai.2015.07.002

G. Teng, Y. Maman, W. Resch, M. Kim, A. Yamane et al., RAG Represents a Widespread Threat to the Lymphocyte Genome, Cell, vol.162, issue.4, pp.751-765, 2015.
DOI : 10.1016/j.cell.2015.07.009

C. L. Tsai and D. G. Schatz, Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2, The EMBO Journal, vol.22, issue.8, pp.1922-1930, 2003.
DOI : 10.1093/emboj/cdg185

C. J. Tsai, S. A. Kim, and G. Chu, Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends, Proceedings of the National Academy of Sciences, vol.104, issue.19, pp.7851-7856, 2007.
DOI : 10.1073/pnas.0702620104

M. Xing, M. Yang, W. Huo, F. Feng, L. Wei et al., Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway, Nature Communications, vol.6, p.6233, 2015.
DOI : 10.1038/emboj.2012.304

A. Zahn, A. K. Eranki, A. M. Patenaude, S. P. Methot, H. Fifield et al., Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination, Proc. Natl. Acad. Sci. U. S. A. 111, pp.988-997, 2014.
DOI : 10.1073/pnas.1320486111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964074

S. Zha, C. Guo, C. Boboila, V. Oksenych, H. L. Cheng et al., ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks, Nature, vol.296, issue.7329, pp.250-254, 2011.
DOI : 10.1038/nature09604

L. Zhang, T. L. Reynolds, X. Shan, and S. Desiderio, Coupling of V(D)J Recombination to the Cell Cycle Suppresses Genomic Instability and Lymphoid Tumorigenesis, Immunity, vol.34, issue.2, pp.163-174, 2011.
DOI : 10.1016/j.immuni.2011.02.003

Y. Zhang, K. Xu, A. Deng, X. Fu, A. Xu et al., An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1, Proceedings of the National Academy of Sciences, vol.111, issue.1, pp.397-402, 2014.
DOI : 10.1073/pnas.1318843111