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ABSTRACT 
Using a statistical analysis on beta-sheet struc- 
tures from the Protein Data Bank, characteristic 
angles within beta-strands were correlated to 
the nature of the side chains. The twists were 
computed from the atomic coordinates of five 
consecutive amino acids’ alpha carbons from 
single beta-strand sequences. Conditions on the 
angles for twists to be mainly left-handed are 
given together with the frequency of occurrence 
for these non-standard geometrical properties 
within protein beta-strands. Applications in 
protein structure prediction and CASP chal- 
lenges in particular are envisioned by making 
use of the probabilities of occurrence in protein 
structures of angle value ranges for given amino 
acids. 
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1. INTRODUCTION 
The number of protein sequences is growing at an ever 

increasing pace along with the developing DNA se- 
quencing facilities [1-3]. Determination of the three- 
dimensional structures of these proteins at atomic resolu- 
tion relies mainly on time consuming approaches such as 
NMR or X-ray diffraction. Protein structure prediction 
made remarkable progress over the last decades [4,5]. In 
particular, template-based methods provide an efficient 
approach to obtain three-dimensional models for proteins. 
Contact maps, correlated mutations and large sets of 

homologous sequences were also used to establish pro- 
tein structure models [6-10]. Based on known three-di- 
mensional structures from the Protein Data Bank (PDB) 
[11,12], protein structural characteristics derived from 
statistical analyses facilitate the quality assessment of 
models which is essential in protein structure predic- 
tion. 

Beta-sheets and alpha-helices represent the major 
structural elements composing proteins and their folds 
[13-18]. Within protein sequences, the location of beta- 
strands composing the sheets can be predicted [19,20]. In 
three dimensions, beta-pleated sheet structures are often 
represented as planes over large scales; their curvature 
and geometrical properties were precisely described 
[21-26]. Beta-bulges define further irregular structures 
within beta-sheets [27]. The right-handed twist of beta- 
strands was studied structurally and energetically [28-30]; 
the dihedral angles Phi and Psi in particular have values 
within narrow ranges characterizing beta-strands within 
the sheets and their twist [31]. The amino acid composi- 
tion of beta-strands was found to depend on the parallel 
or antiparallel nature of beta-strands as well as on the 
position within beta-strands [32-34]. It allowed the defi- 
nition of a rule based on the protein sequence defining 
the anti-parallelism of beta-strands within sheets [35]. 
Other rules linking beta-strand properties and protein 
topology were identified [26,36-41]. The packing within 
protein domains was analyzed for sheets [42]. Good pre- 
diction accuracies of protein beta-sheets’ topology were 
achieved [43-45].  

In an attempt to facilitate protein structure prediction, 
we investigated geometrical properties of protein struc- 
tures at a scale which is sufficiently large to be connected 
to topological properties of the proteins and sufficiently 
small to be linked to amino acid side chains characteriz- 
ing protein sequences. In this report, we focus on the 
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geometry of beta-strands within beta-sheets by measur- 
ing angles within sets of consecutive alpha carbons in 
beta-strands. 

2. METHODS 
Pdb21 available at the www address  

http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::pdb21 
is a program written in perl. It uses as entry files, PDB 
files (pdbxxxx.ent), lists of PDB files corresponding to 
proteins or a protein domains’ structures which may be 
bound to other molecules or files of protein structural 
models written in a PDB file format. The program eli- 
minates files associated to polypeptides of less than fifty 
amino acids from the lists. It takes into consideration the 
first protein chain of each file. The output file (.xls) de- 
fines for each amino acid of the proteins within the list, 
its number defining the position within the sequence, its 
location within the secondary structure elements and the 
set of angles given as integers in degrees as defined in 
Figure 1.  

So as to avoid biases due to closely related conforma- 
tions of a same protein with different PDB references, 
the proteins were chosen randomly among more than 
70,000 protein structures of the PDB and two amino ac- 
ids with identical chemical formulas with the same posi- 
tion numbering within a protein domain starting at the 
same position and ending at the same position with iden- 
tical values for the angle α’ were considered as a single 
amino acid for the statistical analysis. To eliminate biases 
such as redundancy in the experimental data extracted 
from the PDB [46], the sorting of information from the 
PDB files was not carried out at the level of proteins ac- 
cording to their sequence identity, but was done at the 
level of individual amino acids. Each list was composed 
of a set of about 800 randomly chosen protein structures 
from the PDB. The probabilities were derived from the 
analysis of lists. The errors on the probabilities given in 
the tables were calculated from two distinct lists.  

Another list considered resulted from the removal of 
protein sequences with significant sequence identity [47]: 
known as the 25% list, it is available online as the “re- 
cent.pdb_select25.nsigma3” file. All angles were anno- 
tated with primes in this work to avoid any confusion 
with earlier work [48,49]. 

3. RESULTS AND DISCUSSION 
3.1. Characteristic Angles within  

Beta-Strands 
Alpha carbons of amino acids are numbered along the 

protein sequence and their coordinates in the three-di- 
mensional space are given in PDB files. Links are drawn 
between adjacent alpha carbons. Two links allow an an- 
gle to be defined (Figure 1). For each amino acid alpha  

 
P is the plane containing the atoms 1, 2 and 3 and Q is the 
plane containing the atoms 3, 4 and 5. α’ is the angle be- 
tween these two planes. The other angles are defined by two 
links between two alpha carbons (cf. text). The amino acid 
side-chains and the angle β’ are not represented in this scheme 
for clarity; the amino acid in the single-letter code as given in 
the tables is located at position 3 and therefore part of both 
planes P and Q. 

Figure 1. Scheme of alpha carbons within a beta- 
strand highlighting the angles calculated. 

 
carbon located at position noted 3 within a beta-strand 
(Figure 1), the five angles α’, β’, γ’, δ’ and ε’ are calcu- 
lated from alpha carbons’ atomic coordinates using the 
scalar product of the corresponding normed vectors. 
While the angle α’ is defined as an oriented angle be- 
tween two planes (i.e. between their normal vectors) with 
values between −180˚ and 180˚, the other four angles are 
defined by values between 0 and 180˚ using the vectors 
corresponding to the following pairs of alpha carbons. 

 

 
 

The two planes P and Q are defined by the carbon 
atoms 1, 2, 3 and 3, 4, 5 respectively. The sign of the 
angle α’ was defined as the sign of the scalar product (.) 
noted below by making use of the vector product (^) be- 
tween vectors p and q, which are respectively normal to 
the planes P and Q. 

 
 

 
A positive sign for the angle α’ (Figures 1 and 2, 

Tables 1(a) and 1(b)) then corresponds to the right- 
handed twist well known for beta-strands within beta- 
sheets. Conversely, a left-handed twist is characterized 
by a negative angle α’. The angles between these virtual 
bonds defined at a coarser scale than the known dihedral 
angles Phi and Psi between chemical bonds were neces-
sary to define the notion of twist for amino acids found 
in a single beta-strand within a sheet. Unique atoms 
within amino acids such as the alpha- or beta-carbon 
were used in other works for the comparison of protein 
structures [35,50,51]. 
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3.2. Statistical Analysis of the Angles within 
Protein Beta-Strands 

The twist was defined by the angles Phi and Psi [28] 
or by a dihedral angle (theta) between alpha and beta- 
carbons of odd residues [31]. Here, the twist was defined 
for five alpha carbons on a single beta-strand within a 
beta-sheet by measuring the angle α’ between the two 
planes P and Q (Figure 1). The distribution of the angles  

α’ is similar for all amino acids, except for proline. The 
right-handed twist is characterized here by the distribution 
of the angle α’ typically found around +30˚ (Figure 2(a)). 
The probability for finding a proline within a beta-strand 
associated to an angle α’ between the two planes P and Q 
between 0˚ and 22˚ is low (0.03), while it is about 3 to 5 
times higher for the other amino acids (Table 2(a)). 

The classical notion of right-handed twist is not valid  
 

 
(a) 

 
(b) 

 
(c) 

On the y-axis is the probability for an angle to be found within ranges of 22.5˚ for 
α’ and within ranges of 10˚ for the angles β’ and δ’ (x-axis). On the x-axis, α’ 
ranges from −180˚ to +180˚ and β’ and δ’ range from 0˚ to +140˚. 

Figure 2. Distribution of the values of the angles α’ (a), β’ (b), and δ’ (c). 

Copyright © 2014 SciRes.                                                                    OPEN ACCESS 



B. Caudron, J.-L. Jestin / Journal of Biophysical Chemistry 5 (2014) 5-12 8 

Table 1. Distributions of the angle α’ for different ranges of values for β’, γ’ and ε’. 

(a) 

Probabilities Standard distribution β’ > 67.5˚ ε’ < 33.5˚ 

Aanb 89,130 11,365* 5457 688* 1961 236* 

α’ < 0˚ 0.189 (<0.001) 0.178* 0.579 (0.003) 0.535* 0.568 (0.011) 0.572* 

α’ > 0˚ 0.815 (<0.001) 0.822* 0.421 (0.003) 0.465* 0.432 (0.011) 0.428* 

(b) 

Probabilities Standard distribution �γ’ < 33.5˚ 

Aanb 89,130 11,365* 2220 196* 

α’ < 45˚ 0.591 (<0.001) 0.564* 0.24 (0.01) 0.19* 

α’ > 45˚ 0.409 (<0.001) 0.436* 0.76 (0.01) 0.81* 

The average error on the probability for two sets of 800 proteins is given in parentheses. Aanb is the number of amino acids considered for this study of 1605 
proteins of the PDB. 381 proteins were considered for the protein repertoire deriving from PDBSelect25 (sigma 3.0) whose results are labeled in this table by an 
asterisk. 
 
anymore in two extreme cases characterized by high 
values for β’ (β’ > 67.5˚) or by low values for ε’ (ε’< 
33.5˚). These situations occur in respectively in 6.0% or 
6.1% (688/11365 or 5457/89130) and 2.1% or 2.2% 
(236/11365 or 1961/89130) of the amino acids within 
beta-strands (Table 1(a)). The angle α’ is then found to 
have most frequently negative values: the local twist is 
generally left-handed for about 8% of the amino acids 
within beta-strands characterized here by extreme values 
for the angles β’ and ε’ (Table 1(a)). Another relation 
between the distribution of α’ and the values of γ’ was 
noted: more than half of the amino acids (56% or 59%) 
are associated to an α’ value of less than 45˚; but in the 
case of minimal values for the angle γ’ (γ’ < 33.5˚), more 
than three quarters of the α’ values are found to be above 
45˚ (Table 1(b)). 

The angle β’ described earlier was used for protein 
secondary structure determination in the program DSSP 
in particular [48,52]. Its distribution (Figure 2(b)) is 
anomalous for both amino acids glycine and proline, 
when compared to the other 18 canonical amino acids 
found within proteins: the probability for β’ to have a 
value between 0 and 22.5˚ is almost twice lower than for 
most other amino acids (Table 2(a)). Noticeably, almost 
half of the β’ values for the amino acid proline (47%) are 
found between 22.5˚ and 45˚ (Table 2(a)). This observa- 
tion has to be linked to the distribution of the angle δ’ 
(Figure 2(c)), which has values within the same range 
(22.5˚ to 45˚) for only 1% of the prolines within beta- 
strands, i.e. ten to sixty times less than for other amino 
acids (Table 2(b)). 

In beta-strands, the angle δ’ for glycine is found to be 
in more than half of the cases (57%) between 22.5˚ and 
45˚, that is about two to six times more frequently than 
most other amino acids (Table 2(b)). Accordingly, we 
noted that glycine represents 5.0% of the amino acids in 

beta-strands, while glycine represents 56% of the amino 
acids within beta-strands satisfying the condition (δ’ < 
31˚). Glycine and proline whose conformation in proteins 
were extensively described using the dihedral Phi and Psi 
angles [53,54] appear also as special cases at a coarser 
scale among the other canonical amino acids because of 
their altered δ’ and β’ distributions within beta-strands. 
As illustrated in Figure 3, three successive alpha carbons 
centered around glycine tend to be almost aligned more 
frequently than for other amino acids. 

3.3. Application in Structural Model Quality 
Assessment 

Coarse-grained structural models of proteins may con- 
sist of their alpha carbon coordinates for all or most 
amino acids. It is then of interest to have an estimate of 
the twist values which do not rely on the angles Phi and 
Psi in particular, but only on alpha carbon coordinates. 

The statistical analysis of protein structures reported 
above may be further used to evaluate the quality of 
structural models. As an example, given that the angle δ’ 
value at prolines is statistically less than 45˚ in about 1% 
of the occurrences within structures reported in the Pro- 
tein Data Bank, it is unlikely that the δ’ value at prolines 
is less than 45˚ in a predicted structural model of interest. 
The higher the number of prolines for which the δ’ value 
at prolines is less than 45˚, the less likely will be the pre- 
dicted structural model.  

This approach combined with the use for the twenty 
amino acids of further statistically relevant observations 
within beta-sheets and within other structures such as 
those reported recently [25,40] will allow the likelihood 
of structural models to be estimated using new criteria: it 
shall improve the assessment of protein structure model 
quality.    
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Table 2. Distribution of the angles α’, β’, γ’, δ’ and ε’. 

(a) 
  β’   α’   

ranges 0:22 22:45 45:67 0:22 22:45 45:67 67:90 
A 0.51 0.31 0.14 0.15 0.28 0.19 0.09 
R 0.48 0.31 0.15 0.13 0.23 0.21 0.16 
N 0.45 0.29 0.15 0.10 0.24 0.17 0.09 
D 0.40 0.32 0.20 0.11 0.23 0.19 0.12 
C 0.57 0.28 0.12 0.13 0.33 0.21 0.09 
Q 0.50 0.30 0.13 0.13 0.28 0.22 0.10 
E 0.44 0.31 0.17 0.11 0.24 0.21 0.12 
H 0.49 0.28 0.19 0.11 0.32 0.18 0.08 
I 0.59 0.28 0.10 0.13 0.34 0.19 0.09 
L 0.55 0.30 0.11 0.12 0.32 0.21 0.11 
K 0.40 0.37 0.15 0.08 0.25 0.25 0.12 
M 0.56 0.29 0.12 0.14 0.30 0.19 0.10 
F 0.54 0.31 0.12 0.15 0.29 0.19 0.11 
S 0.50 0.28 0.16 0.14 0.26 0.15 0.11 
T 0.55 0.30 0.12 0.12 0.28 0.19 0.13 
W 0.59 0.25 0.11 0.09 0.32 0.19 0.11 
Y 0.55 0.27 0.13 0.12 0.31 0.19 0.09 
V 0.59 0.28 0.09 0.15 0.33 0.21 0.10 
G 0.29 0.29 0.26 0.09 0.24 0.16 0.11 
P 0.29 0.47 0.19 0.03 0.11 0.20 0.25 

The values for α’ are between −180˚ and +180˚, while the other angles have values between 0 and 180˚. Ranges of 22.5˚ were defined and the probability for an 
angle to have a value within the range indicated on the first lines is given within the table for each of the twenty canonical amino acids noted in the single-letter 
code. The average uncertainty is 0.012 for α’, 0.027 for β’, 0.023 for γ’, δ’ and ε’ (average ratio of the error on the probability divided by the probability). 1605 
proteins were analyzed. 

(b) 
  γ’   δ’   ε’  

ranges  22:45 45:67 67:90 22:45 45:67 67:90 22:45 45:67 67:90 
A 0.25 0.53 0.22 0.34 0.52 0.14 0.21 0.55 0.23 
R 0.20 0.55 0.25 0.23 0.62 0.16 0.15 0.62 0.22 
N 0.23 0.53 0.23 0.16 0.53 0.32 0.18 0.46 0.34 
D 0.20 0.57 0.22 0.15 0.52 0.33 0.18 0.37 0.40 
C 0.25 0.54 0.21 0.26 0.57 0.18 0.18 0.61 0.20 
Q 0.18 0.59 0.22 0.20 0.63 0.18 0.19 0.59 0.22 
E 0.19 0.55 0.25 0.20 0.61 0.19 0.22 0.54 0.24 
H 0.18 0.56 0.26 0.30 0.55 0.15 0.17 0.57 0.25 
I 0.19 0.58 0.23 0.10 0.70 0.21 0.18 0.57 0.25 
L 0.18 0.61 0.21 0.11 0.65 0.25 0.20 0.57 0.23 
K 0.21 0.56 0.23 0.19 0.63 0.18 0.20 0.58 0.22 
M 0.24 0.53 0.23 0.26 0.62 0.13 0.20 0.60 0.20 
F 0.20 0.61 0.18 0.29 0.56 0.15 0.21 0.57 0.22 
S 0.25 0.55 0.19 0.36 0.53 0.12 0.25 0.50 0.21 
T 0.26 0.55 0.18 0.23 0.65 0.12 0.18 0.61 0.20 
W 0.30 0.53 0.17 0.29 0.59 0.12 0.21 0.58 0.20 
Y 0.19 0.63 0.17 0.33 0.56 0.11 0.19 0.58 0.22 
V 0.18 0.59 0.23 0.15 0.69 0.16 0.15 0.60 0.24 
G 0.25 0.48 0.27 0.57 0.33 0.09 0.32 0.50 0.17 
P 0.26 0.59 0.15 0.01 0.66 0.32 0.17 0.39 0.40  
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In Dactylium dendroides galactose oxidase protein 
structure [61] (PDB reference: 1gog) within the beta- 
strand extending from amino acids 160 to 166, the val-
ues for α’, β’, γ’, δ’ and ε’ at glycine 162 are respectively 
−173˚, 20˚, 58˚, 9˚ and 70˚. 

Figure 3. A typical structure of glycine within 
a beta-strand. 

4. CONCLUSION  
A statistical analysis of a large number of protein 

structures from the Protein Data Bank allowed the defi- 
nition of geometrical criteria generally associated to left- 
handed twists in protein beta-sheets, while a right- 
handed twist is common for protein beta-sheets. These 
statistical results on protein structures may be further 
implemented as probabilities of occurrence for given sets 
of angles within structure prediction algorithms or used 
as restraints in protein modeling approaches [55]. These 
statistical results may be also used within programs for 
the evaluation of structural model quality [56-58] and 
contribute to the improvement of protein structure pre- 
diction strategies which are evaluated every second year 
by the critical assessment of protein structure prediction 
methods (CASP) [59,60]. 
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