P. W. Rose, C. Bi, W. F. Bluhm, C. H. Christie, D. Dimitropoulos et al., The RCSB Protein Data Bank: new resources for research and education, Nucleic Acids Research, vol.41, issue.D1, pp.475-482, 2013.
DOI : 10.1093/nar/gks1200

D. A. Benson, I. Karsch-mizrachi, K. Clark, D. J. Lipman, J. Ostell et al., GenBank, Nucleic Acids Research, vol.40, issue.D1, pp.48-53, 2012.
DOI : 10.1093/nar/gkr1202

URL : http://doi.org/10.1093/nar/gkj157

D. Baker and A. Sali, Protein Structure Prediction and Structural Genomics, Science, vol.294, issue.5540, pp.93-96, 2001.
DOI : 10.1126/science.1065659

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.82.1058

N. Eswar, B. Webb, M. A. Marti-renom, M. S. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using MODELLER, Curr. Protoc. Bioinformatics, Chapter, 2006.

N. Eswar, D. Eramian, B. Webb, M. Y. Shen, and A. Sali, Protein Structure Modeling with MODELLER, Methods Mol. Biol, vol.426, pp.145-159, 2008.
DOI : 10.1007/978-1-60327-058-8_8

L. R. Forrest, C. L. Tang, and B. Honig, On the Accuracy of Homology Modeling and Sequence Alignment Methods Applied to Membrane Proteins, Biophysical Journal, vol.91, issue.2, pp.508-517, 2006.
DOI : 10.1529/biophysj.106.082313

T. Liu, G. W. Tang, and E. Capriotti, Comparative Modeling: The State of the Art and Protein Drug Target Structure Prediction, Combinatorial Chemistry & High Throughput Screening, vol.14, issue.6, pp.532-547, 2011.
DOI : 10.2174/138620711795767811

A. Fiser, Template-Based Protein Structure Modeling, Methods Mol. Biol, vol.673, pp.73-94, 2010.
DOI : 10.1007/978-1-60761-842-3_6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108304

P. R. Daga, R. Y. Patel, and R. J. Doerksen, Template-Based Protein Modeling: Recent Methodological Advances, Current Topics in Medicinal Chemistry, vol.10, issue.1, pp.84-94, 2010.
DOI : 10.2174/156802610790232314

A. Hillisch, L. F. Pineda, and R. Hilgenfeld, Utility of homology models in the drug discovery process, Drug Discovery Today, vol.9, issue.15, pp.659-669, 2004.
DOI : 10.1016/S1359-6446(04)03196-4

B. Wallner and A. Elofsson, All are not equal: A benchmark of different homology modeling programs, Protein Science, vol.53, issue.5, pp.1315-1327, 2005.
DOI : 10.1110/ps.041253405

P. Weinkam, J. Pons, and A. Sali, Structure-based model of allostery predicts coupling between distant sites, Proc. Natl Acad. Sci. USA, pp.4875-4880, 2012.
DOI : 10.1073/pnas.1116274109

D. Schneidman-duhovny, M. Hammel, and A. Sali, Macromolecular docking restrained by a small angle X-ray scattering profile, Journal of Structural Biology, vol.173, issue.3, pp.461-471, 2011.
DOI : 10.1016/j.jsb.2010.09.023

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040266

H. Fan, D. Schneidman, J. J. Irwin, G. Dong, B. Shoichet et al., Statistical Potential for Modeling and Ranking of Protein???Ligand Interactions, Journal of Chemical Information and Modeling, vol.51, issue.12, pp.3078-3092, 2011.
DOI : 10.1021/ci200377u

N. Eswar, B. John, N. Mirkovic, A. Fiser, V. A. Ilyin et al., Tools for comparative protein structure modeling and analysis, Nucleic Acids Research, vol.31, issue.13, pp.3375-3380, 2003.
DOI : 10.1093/nar/gkg543

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

M. Remmert, A. Biegert, A. Hauser, and J. Soding, HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment, Nature Methods, vol.11, issue.2, pp.173-175, 2012.
DOI : 10.1006/jmbi.1993.1626

URL : http://hdl.handle.net/11858/00-001M-0000-0015-8D56-A

J. Soding, Protein homology detection by HMM-HMM comparison, Bioinformatics, vol.21, issue.7, pp.951-960, 2005.
DOI : 10.1093/bioinformatics/bti125

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.519.1257

T. F. Smith and M. S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

N. Eswar, B. Webb, M. Marti-renom, M. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using Modeller, Curr. Protoc. Bioinformatics, 2006.

M. A. Marti-renom, M. S. Madhusudhan, and A. Sali, Alignment of protein sequences by their profiles, Protein Science, vol.13, issue.4, pp.1071-1087, 2004.
DOI : 10.1110/ps.03379804

M. Y. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures, Protein Science, vol.12, issue.11, pp.2507-2524, 2006.
DOI : 10.1110/ps.062416606

F. Melo and A. Sali, Fold assessment for comparative protein structure modeling, Protein Science, vol.11, issue.11, pp.2412-2426, 2007.
DOI : 10.1110/ps.072895107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211691

U. Pieper, B. M. Webb, D. T. Barkan, D. Schneidman-duhovny, A. Schlessinger et al., ModBase, a database of annotated comparative protein structure models, and associated resources, Nucleic Acids Research, vol.39, issue.Database, pp.465-474, 2011.
DOI : 10.1093/nar/gkq1091

URL : https://hal.archives-ouvertes.fr/pasteur-01414232

D. Eramian, N. Eswar, M. Shen, and A. Sali, How well can the accuracy of comparative protein structure models be predicted?, Protein Science, vol.11, issue.11, pp.1881-1893, 2008.
DOI : 10.1110/ps.036061.108

G. Q. Dong, H. Fan, D. Schneidman-duhovny, B. Webb, and A. Sali, Optimized atomic statistical potentials: Assessment of protein interfaces and loops (epub ahead of print, 2013.

D. Schneidman-duhovny, A. Rossi, A. Avila-sakar, S. J. Kim, J. Velazquez-muriel et al., A method for integrative structure determination of protein-protein complexes, Bioinformatics, vol.28, issue.24, pp.3282-3289, 2012.
DOI : 10.1093/bioinformatics/bts628

B. Pierce and Z. Weng, ZRANK: Reranking protein docking predictions with an optimized energy function, Proteins: Structure, Function, and Bioinformatics, vol.16, issue.4, pp.1078-1086, 2007.
DOI : 10.1002/prot.21373

N. Andrusier, R. Nussinov, and H. J. Wolfson, FireDock: Fast interaction refinement in molecular docking, Proteins: Structure, Function, and Bioinformatics, vol.20, issue.1, pp.139-159, 2007.
DOI : 10.1002/prot.21495

M. P. Jacobson, D. L. Pincus, C. S. Rapp, T. J. Day, B. Honig et al., A hierarchical approach to all-atom protein loop prediction, Proteins: Structure, Function, and Bioinformatics, vol.1, issue.2, pp.351-367, 2004.
DOI : 10.1002/prot.10613

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.911

D. Gront, D. W. Kulp, R. M. Vernon, C. E. Strauss, and D. Baker, Generalized Fragment Picking in Rosetta: Design, Protocols and Applications, PLoS ONE, vol.22, issue.8, p.23294, 2011.
DOI : 10.1371/journal.pone.0023294.s001

URL : http://doi.org/10.1371/journal.pone.0023294

C. Zhang, S. Liu, and Y. Zhou, Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential, Protein Science, vol.13, issue.2, pp.391-399, 2004.
DOI : 10.1110/ps.03411904

S. M. Maurer, A. Rai, and A. Sali, Finding Cures for Tropical Diseases: Is Open Source an Answer?, PLoS Medicine, vol.296, issue.3, p.56, 2004.
DOI : 10.1371/journal.pmed.0010056.g001

URL : http://doi.org/10.1371/journal.pmed.0010056

L. Orti, R. Carbajo, U. Pieper, N. Eswar, S. Maurer et al., A Kernel for Open Source Drug Discovery in Tropical Diseases, PLoS Neglected Tropical Diseases, vol.76, issue.8132, p.418, 2009.
DOI : 10.1371/journal.pntd.0000418.s004

F. Aguero, B. Al-lazikani, M. Aslett, M. Berriman, F. Buckner et al., Genomic-scale prioritization of drug targets: the TDR Targets database, Nature Reviews Drug Discovery, vol.278, issue.11, pp.900-907, 2008.
DOI : 10.1038/nrd2684

F. Martinez-jimenez, G. Papadatos, L. Yang, I. M. Wallace, V. Kumar et al., Target Prediction for an Open Access Set of Compounds Active against Mycobacterium tuberculosis, PLoS Computational Biology, vol.30, issue.4, p.1003253, 2013.
DOI : 10.1371/journal.pcbi.1003253.s003

P. Sampathkumar, F. Lu, X. Zhao, Z. Li, J. Gilmore et al., Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 ?? resolution, Proteins: Structure, Function, and Bioinformatics, vol.37, issue.Database issue, pp.3056-3062, 2010.
DOI : 10.1002/prot.22829

U. Pieper, R. Chiang, J. Seffernick, S. Brown, M. Glasner et al., Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies, Journal of Structural and Functional Genomics, vol.25, issue.2, pp.107-125, 2009.
DOI : 10.1007/s10969-008-9056-5

R. Karchin, M. Diekhans, L. Kelly, D. J. Thomas, U. Pieper et al., LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources, Bioinformatics, vol.21, issue.12, pp.2814-2820, 2005.
DOI : 10.1093/bioinformatics/bti442

A. Fiser and A. Sali, ModLoop: automated modeling of loops in protein structures, Bioinformatics, vol.19, issue.18, pp.2500-2501, 2003.
DOI : 10.1093/bioinformatics/btg362

F. Davis and A. Sali, PIBASE: a comprehensive database of structurally defined protein interfaces, Bioinformatics, vol.21, issue.9, pp.1901-1907, 2005.
DOI : 10.1093/bioinformatics/bti277

M. A. Marti-renom, U. Pieper, M. S. Madhusudhan, A. Rossi, N. Eswar et al., DBAli tools: mining the protein structure space, Nucleic Acids Research, vol.35, issue.Web Server, pp.393-397, 2007.
DOI : 10.1093/nar/gkm236

M. A. Marti-renom, V. A. Ilyin, and A. Sali, DBAli: a database of protein structure alignments, Bioinformatics, vol.17, issue.8, pp.746-747, 2001.
DOI : 10.1093/bioinformatics/17.8.746

U. Pieper, N. Eswar, B. Webb, D. Eramian, L. Kelly et al., MODBASE, a database of annotated comparative protein structure models and associated resources, Nucleic Acids Research, vol.37, issue.Database, pp.347-354, 2009.
DOI : 10.1093/nar/gkn791

URL : https://hal.archives-ouvertes.fr/pasteur-01414232

U. Pieper, N. Eswar, F. P. Davis, H. Braberg, M. S. Madhusudhan et al., MODBASE: a database of annotated comparative protein structure models and associated resources, Nucleic Acids Research, vol.34, issue.90001, pp.291-295, 2006.
DOI : 10.1093/nar/gkj059

URL : https://hal.archives-ouvertes.fr/pasteur-01414232

H. Braberg, B. Webb, E. Tjioe, U. Pieper, A. Sali et al., SALIGN: a web server for alignment of multiple protein sequences and structures, Bioinformatics, vol.28, issue.15, pp.2072-2073, 2012.
DOI : 10.1093/bioinformatics/bts302

D. Schneidman-duhovny, M. Hammel, and A. Sali, Database issue 51 FoXS: a web server for rapid computation and fitting of SAXS Profiles, D344 Nucleic Acids Research, pp.541-544, 2010.

Y. Ueda, H. Taketomi, and N. Go, Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three-dimensional lattice model of lysozyme, Biopolymers, vol.8, issue.6, pp.1531-1548, 1978.
DOI : 10.1002/bip.1978.360170612

K. Okazaki, N. Koga, S. Takada, J. N. Onuchic, and P. G. Wolynes, Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations, Proc. Natl Acad. Sci. USA, pp.11844-11849, 2006.
DOI : 10.1073/pnas.0604375103

P. C. Whitford, J. K. Noel, S. Gosavi, A. Schug, K. Y. Sanbonmatsu et al., An all-atom structure-based potential for proteins: Bridging minimal models with all-atom empirical forcefields, Proteins: Structure, Function, and Bioinformatics, vol.18, issue.2, pp.430-441, 2009.
DOI : 10.1002/prot.22253

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439813

P. Weinkam, Y. C. Chen, J. Pons, and A. Sali, Impact of Mutations on the Allosteric Conformational Equilibrium, Journal of Molecular Biology, vol.425, issue.3, pp.647-661, 2013.
DOI : 10.1016/j.jmb.2012.11.041

M. V. Petoukhov and D. I. Svergun, Analysis of X-ray and neutron scattering from biomacromolecular solutions, Current Opinion in Structural Biology, vol.17, issue.5, pp.562-571, 2007.
DOI : 10.1016/j.sbi.2007.06.009

G. L. Hura, A. L. Menon, M. Hammel, R. P. Rambo, F. L. Poole et al., Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS), Nature Methods, vol.334, issue.8, pp.606-612, 2009.
DOI : 10.3109/00365515309094189

D. Svergun, C. Barberato, and M. H. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.
DOI : 10.1107/S0021889895007047

F. Poitevin, H. Orland, S. Doniach, P. Koehl, and M. Delarue, AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models, Nucleic Acids Research, vol.39, issue.suppl, pp.184-189, 2011.
DOI : 10.1093/nar/gkr430

URL : https://hal.archives-ouvertes.fr/cea-00666216

H. Liu, R. J. Morris, A. Hexemer, S. Grandison, and P. H. Zwart, Computation of small-angle scattering profiles with three-dimensional Zernike polynomials, Acta Crystallographica Section A Foundations of Crystallography, vol.377, issue.2, pp.278-285, 2012.
DOI : 10.1107/S010876731104788X

K. M. Ravikumar, W. Huang, and S. Yang, : A unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes, The Journal of Chemical Physics, vol.138, issue.2, p.24112, 2013.
DOI : 10.1063/1.4774148

D. Schneidman-duhovny, M. Hammel, J. A. Tainer, and A. Sali, Accurate SAXS Profile Computation and its Assessment by Contrast Variation Experiments, Biophysical Journal, vol.105, issue.4, pp.962-974, 2013.
DOI : 10.1016/j.bpj.2013.07.020

URL : http://doi.org/10.1016/j.bpj.2013.07.020

M. Hammel, M. Rey, Y. Yu, R. S. Mani, S. Classen et al., XRCC4 Protein Interactions with XRCC4-like Factor (XLF) Create an Extended Grooved Scaffold for DNA Ligation and Double Strand Break Repair, Journal of Biological Chemistry, vol.286, issue.37, pp.32638-32650, 2011.
DOI : 10.1074/jbc.M111.272641

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173232

M. Pelikan, G. L. Hura, and M. Hammel, Structure and flexibility within proteins as identified through small angle X-ray scattering, General Physiology and Biophysics, vol.28, issue.2, pp.174-189, 2009.
DOI : 10.4149/gpb_2009_02_174

T. D. Grant, J. R. Luft, J. R. Wolfley, H. Tsuruta, A. Martel et al., Small angle X-ray scattering as a complementary tool for high-throughput structural studies, Biopolymers, vol.129, issue.8, pp.517-530, 2011.
DOI : 10.1002/bip.21630

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.
DOI : 10.1107/S0021889803012779

B. K. Shoichet and I. D. Kuntz, Protein docking and complementarity, Journal of Molecular Biology, vol.221, issue.1, pp.327-346, 1991.
DOI : 10.1016/0022-2836(91)80222-G

U. Pieper, A. Schlessinger, E. Kloppmann, G. A. Chang, J. J. Chou et al., Coordinating the impact of structural genomics on the human ??-helical transmembrane proteome, Nature Structural & Molecular Biology, vol.19, issue.2, pp.135-138, 2013.
DOI : 10.1093/nar/gkn201

M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. Mcginnis et al., NCBI BLAST: a better web interface, Nucleic Acids Research, vol.36, issue.Web Server, pp.5-9, 2008.
DOI : 10.1093/nar/gkn201

J. J. Ward, L. J. Mcguffin, K. Bryson, B. F. Buxton, and D. T. Jones, The DISOPRED server for the prediction of protein disorder, Bioinformatics, vol.20, issue.13, pp.2138-2139, 2004.
DOI : 10.1093/bioinformatics/bth195

Z. Dosztanyi, V. Csizmok, P. Tompa, and I. Simon, IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content, Bioinformatics, vol.21, issue.16, pp.3433-3434, 2005.
DOI : 10.1093/bioinformatics/bti541

C. Steentoft, S. Y. Vakhrushev, H. J. Joshi, Y. Kong, M. B. Vester-christensen et al., Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology, The EMBO Journal, vol.57, issue.10, pp.1478-1488, 2013.
DOI : 10.1016/j.cell.2010.04.012

R. Gupta, E. Jung, A. A. Gooley, K. L. Williams, S. Brunak et al., Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks, Glycobiology, vol.9, issue.10, pp.1009-1022, 1999.
DOI : 10.1093/glycob/9.10.1009

C. Y. Cormier, J. G. Park, M. Fiacco, J. Steel, P. Hunter et al., PSI:Biology-materials repository: a biologist???s resource for protein expression plasmids, Journal of Structural and Functional Genomics, vol.77, issue.11, pp.55-62, 2011.
DOI : 10.1007/s10969-011-9100-8

P. Lamesch, N. Li, S. Milstein, C. Fan, T. Hao et al., hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes, Genomics, vol.89, issue.3, pp.307-315, 2007.
DOI : 10.1016/j.ygeno.2006.11.012

G. Temple, D. S. Gerhard, R. Rasooly, E. A. Feingold, P. J. Good et al., The completion of the mammalian gene collection, 2009.

R. L. Seal, S. M. Gordon, M. J. Lush, M. W. Wright, and E. A. Bruford, genenames.org: the HGNC resources in 2011, Nucleic Acids Research, vol.39, issue.Database, pp.514-519, 2011.
DOI : 10.1093/nar/gkq892

L. K. Gifford, L. G. Carter, M. J. Gabanyi, H. M. Berman, and P. D. Adams, The Protein Structure Initiative Structural Biology Knowledgebase Technology Portal: a structural biology web resource, Journal of Structural and Functional Genomics, vol.12, issue.2, pp.57-62, 2012.
DOI : 10.1007/s10969-012-9133-7

E. O. Freed, HIV-1 replication, Somatic Cell and Molecular Genetics, vol.26, issue.1/6, pp.13-33, 2001.
DOI : 10.1023/A:1021070512287

C. K. Mcdonald and D. R. Kuritzkes, Human Immunodeficiency Virus Type 1 Protease Inhibitors, Archives of Internal Medicine, vol.157, issue.9, pp.951-959, 1997.
DOI : 10.1001/archinte.1997.00440300037003

M. Drag and G. S. Salvesen, Emerging principles in protease-based drug discovery, Nature Reviews Drug Discovery, vol.23, issue.9, pp.690-701, 2010.
DOI : 10.1038/nrd3053

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974563

C. Flexner, HIV-protease inhibitors, N. Engl. J. Med, vol.338, pp.1281-1292, 1998.

N. E. Kohl, E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach et al., Active human immunodeficiency virus protease is required for viral infectivity., Proc. Natl Acad. Sci. USA, pp.4686-4690, 1988.
DOI : 10.1073/pnas.85.13.4686

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC280500

K. H. Murthy, E. L. Winborne, M. D. Minnich, J. S. Culp, and C. Debouck, The crystal structures at 2.2-A resolution of hydroxyethylene-based inhibitors bound to human immunodeficiency virus type 1 protease show that the inhibitors are present in two distinct orientations, J. Biol. Chem, vol.267, pp.22770-22778, 1992.

M. Prabu-jeyabalan, E. Nalivaika, and C. A. Schiffer, How does a symmetric dimer recognize an asymmetric substrate? a substrate complex of HIV-1 protease, Journal of Molecular Biology, vol.301, issue.5, pp.1207-1220, 2000.
DOI : 10.1006/jmbi.2000.4018

B. Mahalingam, J. M. Louis, J. Hung, R. W. Harrison, and I. T. Weber, Structural implications of drug-resistant mutants of HIV-1 protease: High-resolution crystal structures of the mutant protease/substrate analogue complexes, Proteins: Structure, Function, and Genetics, vol.32, issue.4, pp.455-464, 2001.
DOI : 10.1002/prot.1057

A. Algeciras-schimnich, A. S. Belzacq-casagrande, G. D. Bren, Z. Nie, J. A. Taylor et al., Analysis of HIV protease killing through caspase 8 reveals a novel interaction between caspase 8 and mitochondria, Open Virol. J, vol.1, pp.39-46, 2007.

Z. Nie, G. D. Bren, S. A. Rizza, and A. D. Badley, HIV protease cleavage of procaspase 8 is necessary for death of HIVinfected cells, Open Virol. J, vol.2, pp.1-7, 2008.

A. Castello, D. Franco, P. Moral-lopez, J. J. Berlanga, E. Alvarez et al., HIV- 1 Protease Inhibits Cap- and Poly(A)-Dependent Translation upon eIF4GI and PABP Cleavage, PLoS ONE, vol.4, issue.11, p.7997, 2009.
DOI : 10.1371/journal.pone.0007997.s002

F. Impens, E. Timmerman, A. Staes, K. Moens, K. K. Arien et al., A catalogue of putative HIV-1 protease host cell substrates, Biological Chemistry, vol.393, issue.9, pp.915-931, 2012.
DOI : 10.1515/hsz-2012-0168

O. Kotik-kogan, E. R. Valentine, D. Sanfelice, M. R. Conte, and S. Curry, Structural Analysis Reveals Conformational Plasticity in the Recognition of RNA 3??? Ends by the Human La Protein, Structure, vol.16, issue.6, pp.852-862, 2008.
DOI : 10.1016/j.str.2008.02.021

K. Nakai, A. Kidera, and M. Kanehisa, Cluster analysis of amino acid indices for prediction of protein structure and function, "Protein Engineering, Design and Selection", vol.2, issue.2, pp.93-100, 1988.
DOI : 10.1093/protein/2.2.93

K. Tomii and M. Kanehisa, Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins, "Protein Engineering, Design and Selection", vol.9, issue.1, pp.27-36, 1996.
DOI : 10.1093/protein/9.1.27

D. T. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091

L. Breiman and E. Schapire, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

D. A. Benson, I. Karsch-mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers, GenBank, Nucleic Acids Research, vol.38, issue.Database, pp.46-51, 2010.
DOI : 10.1093/nar/gkp1024

URL : http://doi.org/10.1093/nar/gkj157

P. J. Kraulis, MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures, Journal of Applied Crystallography, vol.24, issue.5, pp.946-950, 1991.
DOI : 10.1107/S0021889891004399

E. A. Merritt and D. J. Bacon, [26] Raster3D: Photorealistic molecular graphics, Methods Enzymol, vol.277, pp.505-524, 1997.
DOI : 10.1016/S0076-6879(97)77028-9

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.9442

J. A. Capra, R. A. Laskowski, J. M. Thornton, M. Singh, T. A. Funkhouser et al., Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure Remediation of the protein data bank archive, PLoS Comp. Biol. Nucleic Acids Res, vol.5, issue.36, pp.426-433, 2008.

C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker et al., The Universal Protein Resource (UniProt): an expanding universe of protein information, Nucleic Acids Research, vol.34, issue.90001, pp.187-191, 2006.
DOI : 10.1093/nar/gkj161

B. Rhead, D. Karolchik, R. M. Kuhn, A. S. Hinrichs, A. S. Zweig et al., The UCSC Genome Browser database: update 2010, Nucleic Acids Research, vol.38, issue.Database, pp.613-619, 2010.
DOI : 10.1093/nar/gkp939

URL : http://doi.org/10.1093/nar/gkp939

S. Hunter, R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman et al., InterPro: the integrative protein signature database, Nucleic Acids Research, vol.37, issue.Database, pp.211-215, 2009.
DOI : 10.1093/nar/gkn785

URL : https://hal.archives-ouvertes.fr/hal-00428250

T. E. Klein, J. T. Chang, M. K. Cho, K. L. Easton, R. Fergerson et al., Integrating genotype and phenotype information: an overview of the PharmGKB project, The Pharmacogenomics Journal, vol.16, issue.3, pp.167-170, 2001.
DOI : 10.1038/sj.tpj.6500035

J. Haas, S. Roth, K. Arnold, F. Kiefer, T. Schmidt et al., The Protein Model Portal--a comprehensive resource for protein structure and model information, Database, vol.2013, issue.0, p.31, 2013.
DOI : 10.1093/database/bat031

T. Schwede, A. Sali, B. Honig, M. Levitt, H. Berman et al., Outcome of a Workshop on Applications of Protein Models in Biomedical Research, Structure, vol.17, issue.2, pp.151-159, 2009.
DOI : 10.1016/j.str.2008.12.014

A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann et al., The Universal Protein Resource (UniProt), Nucleic Acids Research, vol.33, issue.Database issue, pp.154-159, 2005.
DOI : 10.1093/nar/gki070

URL : http://doi.org/10.1093/nar/gki070

E. Giglia, New year, new PubMed. Eur, J. Phys. Rehabil. Med, vol.45, pp.155-159, 2009.