J. Korduláková, Definition of the First Mannosylation Step in Phosphatidylinositol Mannoside Synthesis. PimA IS ESSENTIAL FOR GROWTH OF MYCOBACTERIA, Journal of Biological Chemistry, vol.277, issue.35, pp.31335-31344, 2002.
DOI : 10.1074/jbc.M204060200

M. E. Guerin, New Insights into the Early Steps of Phosphatidylinositol Mannoside Biosynthesis in Mycobacteria: PimB' IS AN ESSENTIAL ENZYME OF MYCOBACTERIUM SMEGMATIS, Journal of Biological Chemistry, vol.284, issue.38, pp.25687-25696, 2009.
DOI : 10.1074/jbc.M109.030593

M. E. Guerin, J. Kordulakova, P. M. Alzari, P. J. Brennan, and M. Jackson, Molecular Basis of Phosphatidyl-myo-inositol Mannoside Biosynthesis and Regulation in Mycobacteria, Journal of Biological Chemistry, vol.285, issue.44, pp.33577-33583, 2010.
DOI : 10.1074/jbc.R110.168328

L. L. Lairson, B. Henrissat, G. J. Davies, and S. G. Withers, Glycosyltransferases: Structures, Functions, and Mechanisms, Annual Review of Biochemistry, vol.77, issue.1, pp.521-555, 2008.
DOI : 10.1146/annurev.biochem.76.061005.092322

D. Albesa-jové, D. Giganti, M. Jackson, P. M. Alzari, and M. E. Guerin, Structure-function relationships of membrane-associated GT-B glycosyltransferases, Glycobiology, vol.24, issue.2, pp.108-124, 2014.
DOI : 10.1093/glycob/cwt101

M. E. Guerin, Molecular Recognition and Interfacial Catalysis by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria, Journal of Biological Chemistry, vol.282, issue.28, pp.20705-20714, 2007.
DOI : 10.1074/jbc.M702087200

M. E. Guerin, Substrate-induced Conformational Changes in the Essential Peripheral Membrane-associated Mannosyltransferase PimA from Mycobacteria: IMPLICATIONS FOR CATALYSIS, Journal of Biological Chemistry, vol.284, issue.32, pp.21613-21625, 2009.
DOI : 10.1074/jbc.M109.003947

URL : https://hal.archives-ouvertes.fr/pasteur-00512066

D. Giganti, Conformational Plasticity of the Essential Membrane-associated Mannosyltransferase PimA from Mycobacteria, Journal of Biological Chemistry, vol.288, issue.41, pp.29797-29808, 2013.
DOI : 10.1074/jbc.M113.462705

C. Ge, A. Georgiev, A. Öhman, Å. Wieslander, and A. A. Kelly, Tryptophan Residues Promote Membrane Association for a Plant Lipid Glycosyltransferase Involved in Phosphate Stress, Journal of Biological Chemistry, vol.286, issue.8, pp.6669-6684, 2011.
DOI : 10.1074/jbc.M110.138495

M. I. Lindeberg, S. D. Zakharov, and W. A. Cramer, Unfolding pathway of the colicin E1 channel protein on a membrane surface, Journal of Molecular Biology, vol.295, issue.3, pp.679-692, 2000.
DOI : 10.1006/jmbi.1999.3396

K. Mosbahi, Destabilization of the Colicin E9 Endonuclease Domain by Interaction with Negatively Charged Phospholipids, Journal of Biological Chemistry, vol.279, issue.21, pp.22145-22151, 2004.
DOI : 10.1074/jbc.M400402200

A. Le-maire, A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor, Nature Structural & Molecular Biology, vol.60, issue.7, pp.801-807, 2010.
DOI : 10.1038/nsmb.1855

B. M. Burmann, An ?? Helix to ?? Barrel Domain Switch Transforms the Transcription Factor RfaH into a Translation Factor, Cell, vol.150, issue.2, pp.291-303, 2012.
DOI : 10.1016/j.cell.2012.05.042

A. Acknowledgments-we-acknowledge, P. Haouz, S. Weber, P. Lopez-fernandez, and . Arrasate, Structural Glycobiology Group, Unit of Biophysics, Spain) for technical assistance; and the European Synchrotron Radiation Facility (ESRF), the French National Synchrotron SOLEIL, the Diamond Light Source (DLS) and the Swiss Light Source (SLS) for granting access to synchrotron radiation facilities and their staff for the onsite assistance. We specially thank the BioStruct-X project to support access to structural biology facilities. Technical support provided by Universidad del País Vasco/Euskal Herriko Unibertsitatea and Ministerio de Ciencia e Innovación is acknowledged. We also thank all members of the Structural Glycobiology Group for valuable scientific discussions. This work was supported by the European Community's Sixth and Seventh Framework Programmes (contracts LSHP-CT-2005-018923 and HEALTH-F3, the Institut Pasteur, the Spanish Ministry of Science and Innovation (contracts SAF2010-19096 and BIO2013-49022-C2-2-R), IKERBASQUE, the Basque Foundation for Science, the Basque Government and the Fundación Biofísica Bizkaia, 2011.

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

T. Wiseman, S. Williston, J. F. Brandts, and L. N. Lin, Rapid measurement of binding constants and heats of binding using a new titration calorimeter, Analytical Biochemistry, vol.179, issue.1, pp.131-137, 1989.
DOI : 10.1016/0003-2697(89)90213-3

W. Wriggers, Using Situs for the integration of multi-resolution structures, Biophysical Reviews, vol.24, issue.1, pp.21-27, 2010.
DOI : 10.1007/s12551-009-0026-3

D. I. Svergun, C. Barberato, and M. H. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.
DOI : 10.1107/S0021889895007047