A. Ben-shem, D. Fass, and E. Bibi, Structural basis for intramembrane proteolysis by rhomboid serine proteases, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.462-466, 2007.
DOI : 10.1073/pnas.0609773104

K. Bhatt, S. Gurcha, A. Bhatt, G. Besra, W. Jacobs et al., Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis, Microbiology, vol.153, issue.2, pp.513-520, 2007.
DOI : 10.1099/mic.0.2006/003103-0

R. Binet and C. Wandersman, Protein secretion by hybrid bacterial ABC-transporters: specific functions of the membrane ATPase and the membrane fusion protein, EMBO J, vol.14, pp.2298-2306, 1995.

M. Bogdanov, W. Zhang, J. Xie, and W. Dowhan, Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAMTM): Application to lipid-specific membrane protein topogenesis, Methods, vol.36, issue.2, pp.148-171, 2005.
DOI : 10.1016/j.ymeth.2004.11.002

B. Wardenburg, J. Williams, W. Missiakas, and D. , Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins, Proceedings of the National Academy of Sciences, vol.103, issue.37, pp.13831-13836, 2006.
DOI : 10.1073/pnas.0603072103

N. Buddelmeijer and R. Young, -Acyltransferase (Lnt) Exists as an Extracytoplasmic Thioester Acyl-Enzyme Intermediate, Biochemistry, vol.49, issue.2, pp.341-346, 2010.
DOI : 10.1021/bi9020346

URL : https://hal.archives-ouvertes.fr/pasteur-01407714

E. Cascales, A. Bernadac, M. Gavioli, J. Lazzaroni, and R. Lloubes, Pal Lipoprotein of Escherichia coli Plays a Major Role in Outer Membrane Integrity, Journal of Bacteriology, vol.184, issue.3, pp.754-759, 2002.
DOI : 10.1128/JB.184.3.754-759.2002

D. Choi, H. Yamada, T. Mizuno, and S. Mizushima, Trimeric structure and localization of the major lipoprotein in the cell surface of Escherichia coli, J. Biol. Chem, vol.261, pp.8953-8957, 1986.

M. Claros and G. Von-heijne, TopPred II: an improved software for membrane protein structure predictions, Bioinformatics, vol.10, issue.6, pp.685-686, 1994.
DOI : 10.1093/bioinformatics/10.6.685

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/10/6/685

D. Daley, Global Topology Analysis of the Escherichia coli Inner Membrane Proteome, Science, vol.308, issue.5726, pp.1321-1323, 2005.
DOI : 10.1126/science.1109730

K. Datsenko and B. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6640-6645, 2000.
DOI : 10.1073/pnas.120163297

M. De-pedro, J. Höltje, and H. Schwarz, Fast lysis of Escherichia coli filament cells requires differentiation of potential division sites, Microbiology, vol.148, issue.1, pp.79-86, 2002.
DOI : 10.1099/00221287-148-1-79

E. Erez, D. Fass, and B. E. , How intramembrane proteases bury hydrolytic reactions in the membrane, Nature, vol.281, issue.7245, pp.371-378, 2009.
DOI : 10.1038/nature08146

K. Gan, S. Gupta, K. Sankaran, M. Schmid, and H. Wu, Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification, J. Biol. Chem, vol.268, pp.16544-16550, 1993.

K. Gan, The umpA gene of Escherichia coli encodes phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (lgt) and regulates thymidylate synthase levels through translational coupling., Journal of Bacteriology, vol.177, issue.7, pp.1879-1882, 1995.
DOI : 10.1128/jb.177.7.1879-1882.1995

L. Guzman, D. Belin, M. Carson, and J. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter., Journal of Bacteriology, vol.177, issue.14, pp.4121-4130, 1995.
DOI : 10.1128/jb.177.14.4121-4130.1995

A. Hamilton, Mutation of the Maturase Lipoprotein Attenuates the Virulence of Streptococcus equi to a Greater Extent than Does Loss of General Lipoprotein Lipidation, Infection and Immunity, vol.74, issue.12, pp.6907-6919, 2006.
DOI : 10.1128/IAI.01116-06

R. Heath and C. Rock, A conserved histidine is essential for glycerolipid acyltransferase catalysis, J. Bacteriol, vol.180, pp.1425-1430, 1998.

P. Henneke, Lipoproteins Are Critical TLR2 Activating Toxins in Group B Streptococcal Sepsis, The Journal of Immunology, vol.180, issue.9, pp.6149-6158, 2008.
DOI : 10.4049/jimmunol.180.9.6149

URL : https://hal.archives-ouvertes.fr/hal-00276062

F. Hillmann, M. Argentini, and N. Buddelmeijer, -Acyltransferase, Journal of Biological Chemistry, vol.286, issue.32, pp.27936-27946, 2011.
DOI : 10.1074/jbc.M111.243519

URL : https://hal.archives-ouvertes.fr/hal-00604405

T. Hirokawa, S. Boon-chieng, and S. Mitaku, SOSUI: classification and secondary structure prediction system for membrane proteins, Bioinformatics, vol.14, issue.4, pp.378-379, 1998.
DOI : 10.1093/bioinformatics/14.4.378

M. Hussain, Y. Ozawa, S. Ichihara, and S. Mizushima, Signal Peptide Digestion in Escherichia coli. Effect of Protease Inhibitors on Hydrolysis of the Cleaved Signal Peptide of the Major Outer-Membrane Lipoprotein, European Journal of Biochemistry, vol.257, issue.1, pp.233-239, 1982.
DOI : 10.1146/annurev.bi.50.070181.001533

H. Hyyryläinen, Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis, Molecular Microbiology, vol.43, issue.1, pp.108-127, 2010.
DOI : 10.1111/j.1365-2958.2010.07188.x

S. Ichihara, N. Beppu, and S. Mizushima, Protease IV, a cytoplasmic membrane protein of Escherichia coli, has signal peptide peptidase activity, J. Biol. Chem, vol.259, pp.9853-9857, 1984.

D. Jones, Improving the accuracy of transmembrane protein topology prediction using evolutionary information, Bioinformatics, vol.23, issue.5, pp.538-544, 2007.
DOI : 10.1093/bioinformatics/btl677

L. Kall, A. Krogh, and E. Sonnhammer, A Combined Transmembrane Topology and Signal Peptide Prediction Method, Journal of Molecular Biology, vol.338, issue.5, pp.1027-1036, 2004.
DOI : 10.1016/j.jmb.2004.03.016

J. Kornacki and D. Oliver, Lyme disease-causing Borrelia species encode multiple lipoproteins homologous to peptide-binding proteins of ABC-type transporters, Infect. Immun, vol.66, pp.4115-4122, 1998.

A. Kovacs-simon, R. Titball, and S. Michell, Lipoproteins of Bacterial Pathogens, Infection and Immunity, vol.79, issue.2, pp.548-561, 2011.
DOI : 10.1128/IAI.00682-10

A. Krogh, B. Larsson, G. Von-heijne, and E. Sonnhammer, Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen, Journal of Molecular Biology, vol.305, issue.3, pp.567-580, 2001.
DOI : 10.1006/jmbi.2000.4315

O. Kumru, R. Schulze, M. Rodnin, A. Ladokhin, and W. Zuckert, Surface Localization Determinants of Borrelia OspC/Vsp Family Lipoproteins, Journal of Bacteriology, vol.193, issue.11, pp.2814-2825, 2011.
DOI : 10.1128/JB.00015-11

K. Kurokawa, H. Lee, and R. , The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2, Journal of Biological Chemistry, vol.284, issue.13, pp.8406-8411, 2009.
DOI : 10.1074/jbc.M809618200

Y. Lu, F. Zhang, K. Grimes, R. Lee, and C. Rock, Topology and Active Site of PlsY: THE BACTERIAL ACYLPHOSPHATE:GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE, Journal of Biological Chemistry, vol.282, issue.15, pp.11339-11346, 2007.
DOI : 10.1074/jbc.M700374200

S. Machata, Lipoproteins of Listeria monocytogenes Are Critical for Virulence and TLR2-Mediated Immune Activation, The Journal of Immunology, vol.181, issue.3, pp.2028-2035, 2008.
DOI : 10.4049/jimmunol.181.3.2028

C. Manoil and J. Beckwith, A genetic approach to analyzing membrane protein topology, Science, vol.233, issue.4771, pp.1403-1408, 1986.
DOI : 10.1126/science.3529391

F. Munoa, K. Miller, R. Beers, M. Graham, and H. Wu, Membrane topology of Escherichia coli prolipoprotein signal peptidase (signal peptidase II), J. Biol. Chem, vol.266, pp.17667-17672, 1991.

J. Nilsson, B. Persson, V. Heijne, and G. , Consensus predictions of membrane protein topology, FEBS Letters, vol.64, issue.3, pp.267-269, 2000.
DOI : 10.1016/S0014-5793(00)02321-8

S. Okugawa, Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis, Molecular Microbiology, vol.76, issue.1, pp.96-109, 2012.
DOI : 10.1111/j.1365-2958.2011.07915.x

C. Onufryk, M. Crouch, F. Fang, and C. Gross, Characterization of Six Lipoproteins in the ??E Regulon, Journal of Bacteriology, vol.187, issue.13, pp.4552-4561, 2005.
DOI : 10.1128/JB.187.13.4552-4561.2005

C. Paradis-bleau, Lipoprotein Cofactors Located in the Outer Membrane Activate Bacterial Cell Wall Polymerases, Cell, vol.143, issue.7, pp.1110-1120, 2010.
DOI : 10.1016/j.cell.2010.11.037

A. Pugsley and S. Cole, An Unmodified Form of the ColE2 Lysis Protein, an Envelope Lipoprotein, Retains Reduced Ability to Promote Colicin E2 Release and Lysis of Producing Cells, Microbiology, vol.133, issue.9, pp.2411-2420, 1987.
DOI : 10.1099/00221287-133-9-2411

H. Qi, K. Sankaran, K. Gan, and H. Wu, Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions., Journal of Bacteriology, vol.177, issue.23, pp.6820-6824, 1995.
DOI : 10.1128/jb.177.23.6820-6824.1995

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC177548

C. Robichon, D. Vidal-ingigliardi, and A. Pugsley, Depletion of Apolipoprotein N-Acyltransferase Causes Mislocalization of Outer Membrane Lipoproteins in Escherichia coli, Journal of Biological Chemistry, vol.280, issue.2, pp.974-983, 2005.
DOI : 10.1074/jbc.M411059200

B. Rost and C. Sander, Combining evolutionary information and neural networks to predict protein secondary structure, Proteins: Structure, Function, and Genetics, vol.6, issue.1, pp.55-72, 1994.
DOI : 10.1002/prot.340190108

K. Sankaran, Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli., Journal of Bacteriology, vol.179, issue.9, pp.2944-2948, 1997.
DOI : 10.1128/jb.179.9.2944-2948.1997

K. Sankaran, S. Gupta, and H. Wu, [49] Modification of bacterial lipoproteins, Methods Enzymol, vol.250, pp.683-697, 1995.
DOI : 10.1016/0076-6879(95)50105-3

K. Sankaran and H. Wu, Lipid modification of bacterial prolipoprotein . Transfer of diacylglyceryl moiety from phosphatidylglycerol, J. Biol. Chem, vol.269, pp.19701-19706, 1994.

A. Selvan and K. Sankaran, Localization and characterization of prolipoprotein diacylglyceryl transferase (Lgt) critical in bacterial lipoprotein biosynthesis, Biochimie, vol.90, issue.11-12, pp.1647-1655, 2008.
DOI : 10.1016/j.biochi.2008.06.005

M. Serebryakova, The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii, Journal of Biological Chemistry, vol.286, issue.26, pp.22769-22776, 2011.
DOI : 10.1074/jbc.M111.231316

N. Shaner, Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nature Biotechnology, vol.177, issue.12, pp.1567-1572, 2004.
DOI : 10.1016/S0165-0270(00)00354-X

M. Sugai and H. Wu, Export of the outer membrane lipoprotein is defective in secD, secE, and secF mutants of Escherichia coli., Journal of Bacteriology, vol.174, issue.8, pp.2511-2516, 1992.
DOI : 10.1128/jb.174.8.2511-2516.1992

B. Thompson, Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor, Molecular Microbiology, vol.16, pp.943-957, 2010.
DOI : 10.1111/j.1365-2958.2010.07261.x

M. Tokunaga, J. Loranger, and H. Wu, Prolipoprotein modification and processing enzymes in Escherichia coli, J. Biol. Chem, vol.259, pp.3825-3830, 1984.

B. Traxler, D. Boyd, and J. Beckwith, The topological analysis of integral cytoplasmic membrane proteins, The Journal of Membrane Biology, vol.132, issue.1, pp.1-11, 1993.
DOI : 10.1007/BF00233047

A. Tschumi, -Acyltransferase (Lnt) in Mycobacteria, Journal of Biological Chemistry, vol.284, issue.40, pp.27146-27156, 2009.
DOI : 10.1074/jbc.M109.022715

URL : https://hal.archives-ouvertes.fr/insu-00653239

G. Tusnady and I. Simon, The HMMTOP transmembrane topology prediction server, Bioinformatics, vol.17, issue.9, pp.849-850, 2001.
DOI : 10.1093/bioinformatics/17.9.849

A. Typas, Regulation of Peptidoglycan Synthesis by Outer-Membrane Proteins, Cell, vol.143, issue.7, pp.1097-1109, 2010.
DOI : 10.1016/j.cell.2010.11.038

S. Urban, Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis, Biochemical Journal, vol.1396, issue.3, pp.501-512, 2010.
DOI : 10.1101/gr.6425307

D. Vidal-ingigliardi, S. Lewenza, and N. Buddelmeijer, Identification of Essential Residues in Apolipoprotein N-Acyl Transferase, a Member of the CN Hydrolase Family, Journal of Bacteriology, vol.189, issue.12, pp.4456-4464, 2007.
DOI : 10.1128/JB.00099-07

H. Viklund and A. Elofsson, OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar, Bioinformatics, vol.24, issue.15, pp.1662-1668, 2008.
DOI : 10.1093/bioinformatics/btn221

Y. Wang, Y. Zhang, and Y. Ha, Crystal structure of a rhomboid family intramembrane protease, Nature, vol.11, issue.7116, pp.179-180, 2006.
DOI : 10.1038/nature05255

D. Widdick, Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies, Molecular Microbiology, vol.190, issue.5, pp.1395-1412, 2011.
DOI : 10.1111/j.1365-2958.2011.07656.x

M. Williams, M. Fortson, C. Dykstra, P. Jensen, and S. Kushner, Identification and genetic mapping of the structural gene for an essential Escherichia coli membrane protein., Journal of Bacteriology, vol.171, issue.1, pp.565-568, 1989.
DOI : 10.1128/jb.171.1.565-568.1989

Z. Wu, Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry, Nature Structural & Molecular Biology, vol.24, issue.12, pp.1084-1091, 2006.
DOI : 10.1038/nsmb1179