V. N. Uversky, Functional roles of transiently and intrinsically disordered regions within proteins, FEBS Journal, vol.23, issue.7, pp.1182-1189, 2015.
DOI : 10.1111/febs.13202

P. E. Wright and H. J. Dyson, Intrinsically disordered proteins in cellular signalling and regulation, Nature Reviews Molecular Cell Biology, vol.106, issue.1, pp.18-29, 2015.
DOI : 10.1038/nrm3920

R. A. Welch, RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Current topics in microbiology and immunology 257, pp.85-111, 2001.

I. Linhartova, RTX proteins: a highly diverse family secreted by a common mechanism, FEMS Microbiology Reviews, vol.34, issue.6, pp.1076-1112, 2010.
DOI : 10.1111/j.1574-6976.2010.00231.x

U. Baumann, S. Wu, K. M. Flaherty, and D. B. Mckay, Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif, EMBO J, vol.12, pp.3357-3364, 1993.

J. G. Coote, Structural and functional relationships among the RTX toxin determinants of Gram-negative bacteria, FEMS Microbiology Letters, vol.88, issue.2, pp.137-161, 1992.
DOI : 10.1111/j.1574-6968.1992.tb04961.x

P. Delepelaire, Type I secretion in gram-negative bacteria, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1694, issue.1-3, pp.149-161, 2004.
DOI : 10.1016/j.bbamcr.2004.05.001

URL : https://hal.archives-ouvertes.fr/hal-00020359

I. B. Holland, L. Schmitt, and J. Young, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review), Molecular Membrane Biology, vol.249, issue.1-2
DOI : 10.1080/09687860500042013

D. Ladant and A. Ullmann, Bordetella pertussis adenylate cyclase: a toxin with multiple talents, Trends in Microbiology, vol.7, issue.4, pp.172-176, 1999.
DOI : 10.1016/S0966-842X(99)01468-7

J. C. Karst, Adenylate Cyclase CyaA Toxin into a Monomeric and Cytotoxic Form, Journal of Biological Chemistry, vol.289, issue.44, pp.30702-30716, 2014.
DOI : 10.1074/jbc.M114.580852

URL : https://hal.archives-ouvertes.fr/pasteur-01408931

D. Ladant, Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulinbinding domains, J Biol Chem, vol.263, pp.2612-2618, 1988.

J. C. Karst, Adenylate Cyclase Toxin, Biochemistry, vol.49, issue.2, pp.318-328, 2010.
DOI : 10.1021/bi9016389

URL : https://hal.archives-ouvertes.fr/hal-00512114

J. C. Karst, Identification of a Region That Assists Membrane Insertion and Translocation of the Catalytic Domain of Bordetella pertussis CyaA Toxin, Journal of Biological Chemistry, vol.287, issue.12, pp.9200-9212, 2012.
DOI : 10.1074/jbc.M111.316166

URL : https://hal.archives-ouvertes.fr/pasteur-01423063

O. Subrini, Characterization of a Membrane-active Peptide from the Bordetella pertussis CyaA Toxin, Journal of Biological Chemistry, vol.288, issue.45, pp.32585-32598, 2013.
DOI : 10.1074/jbc.M113.508838

URL : https://hal.archives-ouvertes.fr/hal-00937043

M. Hackett, L. Guo, J. Shabanowitz, D. F. Hunt, and E. L. Hewlett, Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis, Science, vol.266, issue.5184, pp.433-435, 1994.
DOI : 10.1126/science.7939682

M. El-azami-el-idrissi, Adenylate Cyclase with CD11b/CD18, Journal of Biological Chemistry, vol.278, issue.40, pp.38514-38521, 2003.
DOI : 10.1074/jbc.M304387200

M. Bejerano, I. Nisan, A. Ludwig, W. Goebel, and E. Hanski, Characterization of the C-terminal domain essential for toxic activity of adenylate cyclase toxin, Molecular Microbiology, vol.77, issue.1, pp.381-392, 1999.
DOI : 10.1074/jbc.270.44.26370

T. Rose, P. Sebo, J. Bellalou, and D. Ladant, Interaction of Calcium with Bordetella pertussis Adenylate Cyclase Toxin: CHARACTERIZATION OF MULTIPLE CALCIUM-BINDING SITES AND CALCIUM-INDUCED CONFORMATIONAL CHANGES, Journal of Biological Chemistry, vol.270, issue.44, pp.26370-26376, 1995.
DOI : 10.1074/jbc.270.44.26370

C. Bauche, Structural and Functional Characterization of an Essential RTX Subdomain of Bordetella pertussis Adenylate Cyclase Toxin, Journal of Biological Chemistry, vol.281, issue.25, pp.16914-16926, 2006.
DOI : 10.1074/jbc.M601594200

A. Chenal, J. I. Guijarro, B. Raynal, M. Delepierre, and D. Ladant, RTX Calcium Binding Motifs Are Intrinsically Disordered in the Absence of Calcium: IMPLICATION FOR PROTEIN SECRETION, Journal of Biological Chemistry, vol.284, issue.3, pp.1781-1789, 2009.
DOI : 10.1074/jbc.M807312200

URL : https://hal.archives-ouvertes.fr/pasteur-00364637

A. Chenal, Calcium-Induced Folding and Stabilization of the Intrinsically Disordered RTX Domain of the CyaA Toxin, Biophysical Journal, vol.99, issue.11, pp.3744-3753016, 2010.
DOI : 10.1016/j.bpj.2010.10.016

S. Perez and A. C. , Characterization of the Regions Involved in the Calcium-Induced Folding of the Intrinsically Disordered RTX Motifs from the Bordetella pertussis Adenylate Cyclase Toxin, Journal of Molecular Biology, vol.397, issue.2, pp.534-549, 2010.
DOI : 10.1016/j.jmb.2010.01.031

URL : https://hal.archives-ouvertes.fr/hal-00512116

A. C. Sotomayor-perez, O. Subrini, A. Hessel, D. Ladant, and A. Chenal, Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of a Repeat in Toxin (RTX) Protein, Journal of the American Chemical Society, vol.135, issue.32, pp.11929-11934, 2013.
DOI : 10.1021/ja404790f

URL : https://hal.archives-ouvertes.fr/pasteur-01423043

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Calcium-induced Folding of Intrinsically Disordered Repeat-in-Toxin (RTX) Motifs via Changes of Protein Charges and Oligomerization States, Journal of Biological Chemistry, vol.286, issue.19, pp.16997-17004, 2011.
DOI : 10.1074/jbc.M110.210393

A. C. Sotomayor-perez, D. Ladant, and A. Chenal, Disorder-to-Order Transition in the CyaA Toxin RTX Domain: Implications for Toxin Secretion, Toxins, vol.7, issue.1, pp.1-20, 2015.
DOI : 10.3390/toxins7010001

V. Receveur-bréchot and D. Durand, How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective, Current Protein & Peptide Science, vol.13, issue.1, pp.55-75, 2012.
DOI : 10.2174/138920312799277901

P. Bernado and D. I. Svergun, Analysis of intrinsically disordered proteins by small-angle X-ray scattering, Methods in molecular biology, vol.896, pp.107-122, 2012.

D. Durand, NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers, Journal of Structural Biology, vol.169, issue.1, pp.45-53, 2010.
DOI : 10.1016/j.jsb.2009.08.009

H. Boze, Proline-Rich Salivary Proteins Have Extended Conformations, Biophysical Journal, vol.99, issue.2, pp.656-665050, 2010.
DOI : 10.1016/j.bpj.2010.04.050

URL : http://doi.org/10.1016/j.bpj.2010.04.050

N. Leulliot, The Family X DNA Polymerase from Deinococcus radiodurans Adopts a Non-standard Extended Conformation, Journal of Biological Chemistry, vol.284, issue.18, pp.11992-11999, 2009.
DOI : 10.1074/jbc.M809342200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673268

G. Porod, Die R??ntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen, Kolloid-Zeitschrift, vol.69, issue.Nr. 3, pp.83-114, 1951.
DOI : 10.1007/BF01512792

P. Sharp and V. A. Bloomfield, Light scattering from wormlike chains with excluded volume effects, Biopolymers, vol.18, issue.8, pp.1201-1211360060814, 1968.
DOI : 10.1002/bip.1968.360060814

D. I. Svergun, M. V. Petoukhov, and M. H. Koch, Determination of Domain Structure of Proteins from X-Ray Solution Scattering, Biophysical Journal, vol.80, issue.6, pp.2946-2953, 2001.
DOI : 10.1016/S0006-3495(01)76260-1

M. B. Kozin and D. I. Svergun, Automated matching of high- and low-resolution structural models, Journal of Applied Crystallography, vol.34, issue.1, pp.33-41, 2001.
DOI : 10.1107/S0021889800014126

T. E. Wales and J. Engen, Hydrogen exchange mass spectrometry for the analysis of protein dynamics, Mass Spectrometry Reviews, vol.120, issue.1, pp.158-170, 2006.
DOI : 10.1002/mas.20064

L. Konermann, J. Pan, and Y. H. Liu, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, Chem. Soc. Rev., vol.5, issue.suppl. 9, pp.1224-1234, 2011.
DOI : 10.1039/C0CS00113A

M. B. Trelle, J. B. Madsen, P. A. Andreasen, and T. J. Jorgensen, Local Transient Unfolding of Native State PAI-1 Associated with Serpin Metastability, Angewandte Chemie International Edition, vol.286, issue.37, pp.9751-9754, 2014.
DOI : 10.1002/anie.201402796

T. R. Keppel and D. D. Weis, Mapping Residual Structure in Intrinsically Disordered Proteins at Residue Resolution Using Millisecond Hydrogen/Deuterium Exchange and Residue Averaging, Journal of The American Society for Mass Spectrometry, vol.24, issue.4, pp.547-554, 2015.
DOI : 10.1007/s13361-014-1033-6

D. Balasubramaniam and E. A. Komives, Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1834, issue.6, pp.1202-1209, 2013.
DOI : 10.1016/j.bbapap.2012.10.009

K. J. Satchell, Structure and function of MARTX toxins and other large repetitive RTX proteins. Annual review of microbiology 65, pp.71-90, 2011.

U. Baumann, Crystal Structure of the 50 Kda Metallo Protease from Serratia marcescens, Journal of Molecular Biology, vol.242, issue.3, pp.244-2511576, 1994.
DOI : 10.1006/jmbi.1994.1576

H. Lilie, W. Haehnel, R. Rudolph, and U. Baumann, Folding of a synthetic parallel ??-roll protein, FEBS Letters, vol.362, issue.2, pp.173-177, 2000.
DOI : 10.1016/S0014-5793(00)01308-9

F. L. Aachmann, NMR Structure of the R-module, Journal of Biological Chemistry, vol.281, issue.11, pp.7350-7356, 2006.
DOI : 10.1074/jbc.M510069200

L. A. Kelley and M. J. Sternberg, Protein structure prediction on the Web: a case study using the Phyre server, Nature Protocols, vol.5, issue.3, pp.363-371, 2009.
DOI : 10.1093/nar/gkm977

M. V. Petoukhov and D. I. Svergun, Global Rigid Body Modeling of Macromolecular Complexes against Small-Angle Scattering Data, Biophysical Journal, vol.89, issue.2, pp.1237-1250, 2005.
DOI : 10.1529/biophysj.105.064154

E. Brookes, B. Demeler, C. Rosano, and M. Rocco, The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule, European Biophysics Journal, vol.26, issue.Suppl 7, pp.423-435, 2010.
DOI : 10.1007/s00249-009-0418-0

V. Koronakis, J. Eswaran, and C. Hughes, Structure and Function of TolC: The Bacterial Exit Duct for Proteins and Drugs, Annual Review of Biochemistry, vol.73, issue.1, pp.467-489, 2004.
DOI : 10.1146/annurev.biochem.73.011303.074104