B. Park, Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS, AIDS, vol.23, issue.4, pp.525-530, 2009.
DOI : 10.1097/QAD.0b013e328322ffac

A. Casadevall and J. Perfect, Cryptococcus neoformans, pp.407-456, 1998.
DOI : 10.1128/9781555818241

F. Dromer, S. Mathoulin-pélissier, O. Launay, and O. Lortholary, Determinants of Disease Presentation and Outcome during Cryptococcosis: The CryptoA/D Study, PLoS Medicine, vol.21, issue.2, p.21, 2007.
DOI : 10.1371/journal.pmed.0040021.sd002

Y. Hsueh, X. Lin, K. Kwon-chung, and J. Heitman, Sexual reproduction of Cryptococcus Cryptococcus: from human pathogen to model yeast, pp.81-96, 2010.

X. Lin and J. Heitman, Species Complex, Annual Review of Microbiology, vol.60, issue.1, pp.69-105, 2006.
DOI : 10.1146/annurev.micro.60.080805.142102

M. Desnos-ollivier, Mixed Infections and In Vivo Evolution in the Human Fungal Pathogen Cryptococcus neoformans, mBio, vol.1, issue.1, pp.91-101, 2010.
DOI : 10.1128/mBio.00091-10

M. Feldmesser, Y. Kress, P. Novikoff, and A. Casadevall, Cryptococcus neoformans Is a Facultative Intracellular Pathogen in Murine Pulmonary Infection, Infection and Immunity, vol.68, issue.7, pp.4225-4237, 2000.
DOI : 10.1128/IAI.68.7.4225-4237.2000

C. Charlier, Evidence of a Role for Monocytes in Dissemination and Brain Invasion by Cryptococcus neoformans, Infection and Immunity, vol.77, issue.1, pp.120-127, 2009.
DOI : 10.1128/IAI.01065-08

F. Chrétien, Infection after Fungemia, The Journal of Infectious Diseases, vol.186, issue.4, pp.522-530, 2002.
DOI : 10.1086/341564

J. Bliska and A. Casadevall, Intracellular pathogenic bacteria and fungi ??? a case of convergent evolution?, Nature Reviews Microbiology, vol.62, issue.2, pp.165-171, 2009.
DOI : 10.1038/nrmicro2049

D. Poeta and M. , Role of Phagocytosis in the Virulence of Cryptococcus neoformans, Eukaryotic Cell, vol.3, issue.5, pp.1067-1075, 2004.
DOI : 10.1128/EC.3.5.1067-1075.2004

R. Santangelo, Role of Extracellular Phospholipases and Mononuclear Phagocytes in Dissemination of Cryptococcosis in a Murine Model, Infection and Immunity, vol.72, issue.4, pp.2229-2239, 2004.
DOI : 10.1128/IAI.72.4.2229-2239.2004

H. Ma, The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation, Proceedings of the National Academy of Sciences, vol.106, issue.31, pp.12980-12985, 2009.
DOI : 10.1073/pnas.0902963106

Y. Luo, M. Alvarez, L. Xia, and A. Casadevall, The Outcome of Phagocytic Cell Division with Infectious Cargo Depends on Single Phagosome Formation, PLoS ONE, vol.33, issue.5, p.3219, 2008.
DOI : 10.1371/journal.pone.0003219.s009

G. Cox, Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans, Molecular Microbiology, vol.153, issue.1, pp.166-175, 2001.
DOI : 10.1111/j.1574-6968.1994.tb07257.x

G. Cox, J. Mukherjee, G. Cole, A. Casadevall, and J. Perfect, Urease as a Virulence Factor in Experimental Cryptococcosis, Infection and Immunity, vol.68, issue.2, pp.443-448, 2000.
DOI : 10.1128/IAI.68.2.443-448.2000

P. Williamson, Laccase and melanin in the pathogenesis of Cryptococcus neoformans, Frontiers in Bioscience, vol.2, issue.5, pp.99-107, 1997.
DOI : 10.2741/A231

J. Panepinto, The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans, Journal of Clinical Investigation, vol.115, issue.3, pp.632-641, 2005.
DOI : 10.1172/JCI23048DS1

C. Luberto, Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans, Genes & Development, vol.15, issue.2, pp.201-212, 2001.
DOI : 10.1101/gad.856001

C. Luberto, Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans, Journal of Clinical Investigation, vol.112, issue.7, pp.1080-1094, 2003.
DOI : 10.1172/JCI18309

D. Toffaletti, D. Poeta, M. Rude, T. Dietrich, F. Perfect et al., Regulation of cytochrome c oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment, Microbiology, vol.149, issue.4, pp.1041-1049, 2003.
DOI : 10.1099/mic.0.26021-0

J. Steenbergen, H. Shuman, and A. Casadevall, Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages, Proceedings of the National Academy of Sciences, vol.98, issue.26, pp.15245-15250, 2001.
DOI : 10.1073/pnas.261418798

C. Chrisman, M. Alvarez, and A. Casadevall, Phagocytosis of Cryptococcus neoformans by, and Nonlytic Exocytosis from, Acanthamoeba castellanii, Applied and Environmental Microbiology, vol.76, issue.18, pp.6056-6062, 2010.
DOI : 10.1128/AEM.00812-10

B. Fries, C. Taborda, E. Serfass, and A. Casadevall, Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection, Journal of Clinical Investigation, vol.108, issue.11, pp.1639-1648, 2001.
DOI : 10.1172/JCI13407

R. Moore, Cytology and ultrastructure of yeasts and yeastlike fungi The yeasts, a taxonomic study, pp.33-44, 1998.

A. Cassone, N. Simonetti, and V. Strippoli, Wall structure and bud formation inCryptococcus neoformans, Archives of Microbiology, vol.7, issue.1, pp.205-212, 1974.
DOI : 10.1007/BF02451762

R. Simmons, Comparison of chitin localization in Saccharomyces cerevisiae, Cryptococcus neoformans, and Malassezia spp., Mycological Research, vol.93, issue.4, pp.551-553, 1989.
DOI : 10.1016/S0953-7562(89)80053-X

N. Gilbert, J. Lodge, and C. Specht, The cell wall of CryptococcusCryptococcus: from human pathogen to model yeast, pp.67-80, 2010.

A. Lyons and C. Parish, Determination of lymphocyte division by flow cytometry, Journal of Immunological Methods, vol.171, issue.1, pp.131-137, 1994.
DOI : 10.1016/0022-1759(94)90236-4

T. Kozel, G. Pfrommer, A. Guerlain, B. Highison, and G. Highison, Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3, Infect. Immun, vol.56, pp.2794-2800, 1988.

E. Rosowski, dense granule protein, The Journal of Experimental Medicine, vol.132, issue.1, pp.195-212, 2011.
DOI : 10.1084/jem.20091703

C. Kébaïer, H. Louzir, M. Chenik, B. Salah, A. Dellagi et al., Heterogeneity of Wild Leishmania major Isolates in Experimental Murine Pathogenicity and Specific Immune Response, Infection and Immunity, vol.69, issue.8, pp.4906-4915, 2001.
DOI : 10.1128/IAI.69.8.4906-4915.2001

P. Holzmuller, Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics, Microbes and Infection, vol.10, issue.1, pp.79-86, 2008.
DOI : 10.1016/j.micinf.2007.10.008

C. Lobo, Invasion Profiles of Brazilian Field Isolates of Plasmodium falciparum: Phenotypic and Genotypic Analyses, Infection and Immunity, vol.72, issue.10, pp.5886-5891, 2004.
DOI : 10.1128/IAI.72.10.5886-5891.2004

D. Maccallum, Property Differences among the Four Major Candida albicans Strain Clades, Eukaryotic Cell, vol.8, issue.3, pp.373-387, 2009.
DOI : 10.1128/EC.00387-08

F. Dromer, A. Casadevall, J. Perfect, and T. Sorrell, Cryptococcus neoformans: latency and diseaseCryptococcus: from human pathogen to model yeast, pp.429-430, 2010.

M. Shi, Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain, Journal of Clinical Investigation, vol.120, issue.5, pp.1683-1693, 2010.
DOI : 10.1172/JCI41963DS1

A. Casadevall, Cryptococci at the brain gate: break and enter or use a Trojan horse?, Journal of Clinical Investigation, vol.120, issue.5, pp.1389-1392, 2010.
DOI : 10.1172/JCI42949

N. Macura, T. Zhang, and A. Casadevall, Dependence of Macrophage Phagocytic Efficacy on Antibody Concentration, Infection and Immunity, vol.75, issue.4, pp.1904-1915, 2007.
DOI : 10.1128/IAI.01258-06

S. Levitz, Innate Recognition of Fungal Cell Walls, PLoS Pathogens, vol.2, issue.4, p.1000758, 2010.
DOI : 10.1371/journal.ppat.1000758.t001

C. Chun, J. Brown, and H. Madhani, A Major Role for Capsule-Independent Phagocytosis-Inhibitory Mechanisms in Mammalian Infection by Cryptococcus neoformans, Cell Host & Microbe, vol.9, issue.3, pp.243-251, 2011.
DOI : 10.1016/j.chom.2011.02.003

A. Casadevall, J. Steenbergen, and J. Nosanchuk, ???Ready made??? virulence and ???dual use??? virulence factors in pathogenic environmental fungi ??? the Cryptococcus neoformans paradigm, Current Opinion in Microbiology, vol.6, issue.4, pp.332-337, 2003.
DOI : 10.1016/S1369-5274(03)00082-1

G. Hu, P. Cheng, A. Sham, J. Perfect, and J. Kronstad, during early murine pulmonary infection, Molecular Microbiology, vol.5, issue.6, pp.1456-1475, 2008.
DOI : 10.1111/j.1365-2958.2008.06374.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730461

X. Liu, G. Hu, J. Panepinto, and P. Williamson, Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans, Molecular Microbiology, vol.18, issue.5, pp.1132-1146, 2006.
DOI : 10.1046/j.1365-2958.2003.03340.x

G. Hu, PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans, Journal of Clinical Investigation, vol.118, issue.3, pp.1186-1197, 2008.
DOI : 10.1172/JCI32053

P. Stano, App1: An Antiphagocytic Protein That Binds to Complement Receptors 3 and 2, The Journal of Immunology, vol.182, issue.1, pp.84-91, 2009.
DOI : 10.4049/jimmunol.182.1.84

F. Dromer, J. Salamero, A. Contrepois, C. Carbon, and P. Yeni, Production , characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neoformans capsular polysaccharide, Infect. Immun, vol.55, pp.742-748, 1987.

W. Fan, P. Kraus, M. Boily, and J. Heitman, Cryptococcus neoformans Gene Expression during Murine Macrophage Infection, Eukaryotic Cell, vol.4, issue.8, pp.1420-1433, 2005.
DOI : 10.1128/EC.4.8.1420-1433.2005

C. Xue, Y. Tada, X. Dong, and J. Heitman, The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants, Cell Host & Microbe, vol.1, issue.4, pp.263-273, 2007.
DOI : 10.1016/j.chom.2007.05.005

C. Xue, Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual Reproduction and Virulence, mBio, vol.1, issue.1, pp.84-94, 2010.
DOI : 10.1128/mBio.00084-10

M. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

J. Hellemans, G. Mortier, A. De-paepe, F. Speleman, and J. Vandesompele, qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biology, vol.8, issue.2, p.19, 2007.
DOI : 10.1186/gb-2007-8-2-r19

A. Saeed, TM4: a free, open-source system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.