. Centre, U. S. Nbic-),-the, M. Downey, R. Houlsworth, L. Maringele et al., Department of Energy (grant no. DEFG0207ER64498 to V.deC.-L.) and by the National Institutes of Health (grant no. R01 GM70641-01 to V.deC.-L.) Fondation pour la Recherche Me´dicaleMe´dicale (FRM) to X.L. Funding for open access charge: CNRS. REFERENCES 1, Cell, vol.124, pp.1155-1168, 2006.

E. Kisseleva-romanova, R. Lopreiato, A. Baudin-baillieu, J. C. Rousselle, L. Ilan et al., Yeast homolog of a cancer-testis antigen defines a new transcription complex, The EMBO Journal, vol.9, issue.15, pp.3576-3585, 2006.
DOI : 10.1126/science.1077790

URL : https://hal.archives-ouvertes.fr/hal-00133495

J. Oberto, N. Breuil, A. Hecker, F. Farina, C. Brochier-armanet et al., Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance, Nucleic Acids Research, vol.37, issue.16, pp.5343-5352, 2009.
DOI : 10.1093/nar/gkp557

URL : https://hal.archives-ouvertes.fr/hal-00698096

A. Mellors and R. Y. Lo, [47] O-sialoglycoprotease from Pasteurella haemolytica, Methods Enzymol, vol.248, pp.728-740, 1995.
DOI : 10.1016/0076-6879(95)48049-8

D. Y. Mao, D. Neculai, M. Downey, S. Orlicky, Y. Z. Haffani et al., Atomic Structure of the KEOPS Complex: An Ancient Protein Kinase-Containing Molecular Machine, Molecular Cell, vol.32, issue.2, pp.259-275, 2008.
DOI : 10.1016/j.molcel.2008.10.002

A. Hecker, R. Lopreiato, M. Graille, B. Collinet, P. Forterre et al., Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex, The EMBO Journal, vol.57, issue.17, pp.2340-2351, 2008.
DOI : 10.1038/emboj.2008.157

URL : https://hal.archives-ouvertes.fr/hal-00357948

A. Hecker, N. Leulliot, D. Gadelle, M. Graille, A. Justome et al., An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro, Nucleic Acids Research, vol.35, issue.18, pp.6042-6051, 2007.
DOI : 10.1093/nar/gkm554

URL : https://hal.archives-ouvertes.fr/hal-00195238

S. Facchin, R. Lopreiato, S. Stocchetto, G. Arrigoni, L. Cesaro et al., Structure???function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life, Biochemical Journal, vol.364, issue.2, pp.457-463, 2002.
DOI : 10.1042/bj20011376

M. Y. Galperin and E. V. Koonin, 'Conserved hypothetical' proteins: prioritization of targets for experimental study, Nucleic Acids Research, vol.32, issue.18, pp.5452-5463, 2004.
DOI : 10.1093/nar/gkh885

L. Decourty, C. Saveanu, K. Zemam, F. Hantraye, E. Frachon et al., Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles, Proc. Natl Acad. Sci. USA, pp.5821-5826, 2008.
DOI : 10.1073/pnas.0710533105

URL : https://hal.archives-ouvertes.fr/pasteur-01404694

T. Margaritis, P. Lijnzaad, D. Van-leenen, D. Bouwmeester, P. Kemmeren et al., Adaptable gene-specific dye bias correction for two-channel DNA microarrays, Molecular Systems Biology, vol.112, p.266, 2009.
DOI : 10.1038/nbt836

URL : http://doi.org/10.1038/msb.2009.21

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.3, 2004.
DOI : 10.2202/1544-6115.1027

M. C. Daugeron, M. Prouteau, F. Lacroute, and B. Seraphin, The highly conserved eukaryotic DRG factors are required for efficient translation in a manner redundant with the putative RNA helicase Slh1, Nucleic Acids Research, vol.39, issue.6, 2010.
DOI : 10.1093/nar/gkq898

D. Kressler, J. De-la-cruz, M. Rojo, and P. Linder, Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.17, issue.12, pp.7283-7294, 1997.
DOI : 10.1128/MCB.17.12.7283

E. Yacoubi, B. Lyons, B. Cruz, Y. Reddy, R. Nordin et al., The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA, Nucleic Acids Research, vol.37, issue.9, pp.2894-2909, 2009.
DOI : 10.1093/nar/gkp152

J. R. Lorsch and T. E. Dever, Molecular View of 43 S Complex Formation and Start Site Selection in Eukaryotic Translation Initiation, Journal of Biological Chemistry, vol.285, issue.28, pp.21203-21207, 2010.
DOI : 10.1074/jbc.R110.119743

R. J. Jackson, C. U. Hellen, and T. V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nature Reviews Molecular Cell Biology, vol.4, issue.2, pp.113-127, 2010.
DOI : 10.1038/nrm2838

J. J. Benschop, N. Brabers, D. Van-leenen, L. V. Bakker, H. W. Van-deutekom et al., A Consensus of Core Protein Complex Compositions for Saccharomyces cerevisiae, Molecular Cell, vol.38, issue.6, pp.916-928, 2010.
DOI : 10.1016/j.molcel.2010.06.002

A. G. Hinnebusch, AND THE GENERAL AMINO ACID CONTROL OF YEAST, Annual Review of Microbiology, vol.59, issue.1, pp.407-450, 2005.
DOI : 10.1146/annurev.micro.59.031805.133833

K. D. Macisaac, T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo et al., An improved map of conserved regulatory sites for Saccharomyces cerevisiae, BMC Bioinformatics, vol.7, issue.1, p.113, 2006.
DOI : 10.1186/1471-2105-7-113

P. P. Mueller, S. Harashima, and A. G. Hinnebusch, A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript., Proc. Natl Acad. Sci. USA, pp.2863-2867, 1987.
DOI : 10.1073/pnas.84.9.2863

J. Dong, J. S. Nanda, H. Rahman, M. R. Pruitt, B. S. Shin et al., Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNA(Met) and AUG selection, 2008.

C. R. Singh, C. Curtis, Y. Yamamoto, N. S. Hall, D. S. Kruse et al., Eukaryotic Translation Initiation Factor 5 Is Critical for Integrity of the Scanning Preinitiation Complex and Accurate Control of GCN4 Translation, Molecular and Cellular Biology, vol.25, issue.13, pp.5480-5491, 2005.
DOI : 10.1128/MCB.25.13.5480-5491.2005

T. Maiti, S. Das, and U. Maitra, Isolation and functional characterization of a temperature-sensitive mutant of the yeast Saccharomyces cerevisiae in translation initiation factor eIF5: an eIF5-dependent cell-free translation system, Gene, vol.244, issue.1-2, pp.109-118, 2000.
DOI : 10.1016/S0378-1119(99)00570-3

T. Maiti and U. Maitra, Characterization of Translation Initiation Factor 5 (eIF5) fromSaccharomyces cerevisiae: FUNCTIONAL HOMOLOGY WITH MAMMALIAN eIF5 AND THE EFFECT OF DEPLETION OF eIF5 ON PROTEIN SYNTHESIS IN VIVO ANDIN VITRO, Journal of Biological Chemistry, vol.272, issue.29, pp.18333-18340, 1997.
DOI : 10.1074/jbc.272.29.18333

C. A. Lin, S. R. Ellis, and H. L. True, The Sua5 Protein Is Essential for Normal Translational Regulation in Yeast, Molecular and Cellular Biology, vol.30, issue.1, pp.354-363, 2010.
DOI : 10.1128/MCB.00754-09

J. G. Na, I. Pinto, and M. Hampsey, Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae, Genetics, vol.131, pp.791-801, 1992.

E. Yacoubi, B. Hatin, I. Deutsch, C. Kahveci, T. Rousset et al., A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification, The EMBO Journal, vol.70, issue.5, pp.882-893, 2011.
DOI : 10.1038/emboj.2010.363

URL : https://hal.archives-ouvertes.fr/hal-00593551

M. Srinivasan, P. Mehta, Y. Yu, E. Prugar, E. V. Koonin et al., The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A, The EMBO Journal, vol.209, issue.5, pp.873-881, 2011.
DOI : 10.1038/emboj.2010.343

G. B. Chheda, C. I. Hong, C. F. Piskorz, and G. A. Harmon, into modified nucleoside of transfer ribonucleic acid, Biochemical Journal, vol.127, issue.3, pp.515-519, 1972.
DOI : 10.1042/bj1270515

D. M. Powers and A. Peterkofsky, Biosynthesis and specific labeling of N-(purin-6-ylcarbamoyl)threonine of Escherichiacoli transfer RNA, Biochemical and Biophysical Research Communications, vol.46, issue.2, pp.831-838, 1972.
DOI : 10.1016/S0006-291X(72)80216-X

O. Nureki, T. Niimi, T. Muramatsu, H. Kanno, T. Kohno et al., Molecular Recognition of the Identity-determinant Set of Isoleucine Transfer RNA from Escherichia coli, Journal of Molecular Biology, vol.236, issue.3, pp.710-724, 1994.
DOI : 10.1006/jmbi.1994.1184

M. Foiani, A. M. Cigan, C. J. Paddon, S. Harashima, and A. G. Hinnebusch, GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.11, issue.6, pp.3203-3216, 1991.
DOI : 10.1128/MCB.11.6.3203

J. W. Stuart, K. M. Koshlap, R. Guenther, and P. F. Agris, Naturally-occurring Modification Restricts the Anticodon Domain Conformational Space of tRNAPhe, Journal of Molecular Biology, vol.334, issue.5, pp.901-918, 2003.
DOI : 10.1016/j.jmb.2003.09.058

J. Weissenbach and H. Grosjean, Effect of Threonylcarbamoyl Modification (t6A) in Yeast tRNAArgIII on Codon-Anticodon and Anticodon-Anticodon Interactions. A Thermodynamic and Kinetic Evaluation, European Journal of Biochemistry, vol.28, issue.1, pp.207-213, 1981.
DOI : 10.1016/0022-2836(73)90021-1

H. Qiu, C. Hu, J. Anderson, G. R. Bjork, S. Sarkar et al., Defects in tRNA Processing and Nuclear Export Induce GCN4 Translation Independently of Phosphorylation of the alpha Subunit of Eukaryotic Translation Initiation Factor 2, Molecular and Cellular Biology, vol.20, issue.7, pp.2505-2516, 2000.
DOI : 10.1128/MCB.20.7.2505-2516.2000

C. R. Vazquez-de-aldana, R. C. Wek, P. S. Segundo, A. G. Truesdell, and A. G. Hinnebusch, Multicopy tRNA genes functionally suppress mutations in yeast eIF-2 alpha kinase GCN2: evidence for separate pathways coupling GCN4 expression to unchanged tRNA., Molecular and Cellular Biology, vol.14, issue.12, pp.7920-7932, 1994.
DOI : 10.1128/MCB.14.12.7920

B. N. Elkins and E. B. Keller, Enzymic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid, Biochemistry, vol.13, issue.22, pp.4622-4628, 1974.
DOI : 10.1021/bi00719a024

H. K. Huang, H. Yoon, E. M. Hannig, and T. F. Donahue, GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces??cerevisiae, Genes & Development, vol.11, issue.18, pp.2396-2413, 1997.
DOI : 10.1101/gad.11.18.2396

K. Asano, A. Shalev, L. Phan, K. Nielsen, J. Clayton et al., Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation, The EMBO Journal, vol.20, issue.9, pp.2326-2337, 2001.
DOI : 10.1093/emboj/20.9.2326

D. K. Morris and V. Lundblad, Programmed translational frameshifting in a gene required for yeast telomere replication, Current Biology, vol.7, issue.12, pp.969-976, 1997.
DOI : 10.1016/S0960-9822(06)00416-7

F. L. Meng, Y. Hu, N. Shen, X. J. Tong, J. Wang et al., Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication, The EMBO Journal, vol.143, issue.10, pp.1466-1478, 2009.
DOI : 10.1126/science.289.5480.771