T. Hirose, R. Smith, and A. Jetten, ROR-??: The Third Member of ROR/RZR Orphan Receptor Subfamily That Is Highly Expressed in Skeletal Muscle, Biochemical and Biophysical Research Communications, vol.205, issue.3, pp.1976-1983, 1994.
DOI : 10.1006/bbrc.1994.2902

N. Preitner, The Orphan Nuclear Receptor REV-ERB?? Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator, Cell, vol.110, issue.2, pp.251-260, 2002.
DOI : 10.1016/S0092-8674(02)00825-5

C. Liu, S. Li, T. Liu, J. Borjigin, and J. Lin, Transcriptional coactivator PGC-1?? integrates the mammalian clock and energy metabolism, Nature, vol.293, issue.7143, pp.477-481, 2007.
DOI : 10.1038/nature05767

M. Ortiz, F. Piedrafita, M. Pfahl, and R. Maki, TOR: a new orphan receptor expressed in the thymus that can modulate retinoid and thyroid hormone signals, Mol Endocrinol, vol.9, pp.1679-1691, 1995.

Y. He, M. Deftos, E. Ojala, and M. Bevan, ROR??t, a Novel Isoform of an Orphan Receptor, Negatively Regulates Fas Ligand Expression and IL-2 Production in T Cells, Immunity, vol.9, issue.6, pp.797-806, 1998.
DOI : 10.1016/S1074-7613(00)80645-7

I. Villey, R. De-chasseval, and J. De-villartay, RORcT, a thymus-specific isoform of the orphan nuclear receptor RORc ? TOR, is upregulated by signaling through the pre-T cell receptor and binds to the TEA promoter

Y. He, C. Beers, M. Deftos, E. Ojala, K. Forbush et al., Down-regulation of the orphan nuclear receptor ROR gamma t is essential for T lymphocyte maturation

J. Guo, Regulation of the TCR?? repertoire by the survival window of CD4+CD8+ thymocytes, Nature Immunology, vol.3, issue.5, pp.469-476, 2002.
DOI : 10.1038/ni791

Z. Sun, Requirement for RORgamma in Thymocyte Survival and Lymphoid Organ Development, Science, vol.288, issue.5475, pp.2369-2373, 2000.
DOI : 10.1126/science.288.5475.2369

A. Jetten, S. Kurebayashi, and E. Ueda, The ROR nuclear orphan receptor subfamily: Critical regulators of multiple biological processes, Prog Nucleic Acid Res Mol Biol, vol.69, pp.205-247, 2001.
DOI : 10.1016/S0079-6603(01)69048-2

D. Johnson, J. Lovett, M. Hirsch, F. Xia, and J. Chen, NuRD complex component Mi-2?? binds to and represses ROR??-mediated transcriptional activation, Biochemical and Biophysical Research Communications, vol.318, issue.3, pp.714-718, 2004.
DOI : 10.1016/j.bbrc.2004.04.087

H. Xi, R. Schwartz, I. Engel, C. Murre, and G. Kersh, Interplay between ROR??t, Egr3, and E Proteins Controls Proliferation in Response to Pre-TCR Signals, Immunity, vol.24, issue.6, pp.813-826, 2006.
DOI : 10.1016/j.immuni.2006.03.023

H. Xi and G. Kersh, Sustained Early Growth Response Gene 3 Expression Inhibits the Survival of CD4/CD8 Double-Positive Thymocytes, The Journal of Immunology, vol.173, issue.1, pp.340-348, 2004.
DOI : 10.4049/jimmunol.173.1.340

H. Kang, NABP1, a novel ROR??-regulated gene encoding a single-stranded nucleic-acid-binding protein, Biochemical Journal, vol.397, issue.1, pp.89-99, 2006.
DOI : 10.1042/BJ20051781

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479751

S. Kurebayashi, Retinoid-related orphan receptor gamma (RORgamma ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis, Proceedings of the National Academy of Sciences, vol.97, issue.18, pp.10132-10137, 2000.
DOI : 10.1073/pnas.97.18.10132

R. Mebius, P. Streeter, S. Michie, E. Butcher, and I. Weissman, A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes., Proceedings of the National Academy of Sciences, vol.93, issue.20, pp.11019-11024, 1996.
DOI : 10.1073/pnas.93.20.11019

R. Mebius, P. Rennert, and I. Weissman, Developing Lymph Nodes Collect CD4+CD3??? LT??+ Cells That Can Differentiate to APC, NK Cells, and Follicular Cells but Not T or B Cells, Immunity, vol.7, issue.4, pp.493-504, 1997.
DOI : 10.1016/S1074-7613(00)80371-4

URL : http://doi.org/10.1016/s1074-7613(00)80371-4

H. Yoshida, IL-7 receptor alpha+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches, International Immunology, vol.11, issue.5, pp.643-655, 1999.
DOI : 10.1093/intimm/11.5.643

G. Eberl, S. Marmon, M. Sunshine, P. Rennert, Y. Choi et al., An essential function for the nuclear receptor ROR??t in the generation of fetal lymphoid tissue inducer cells, Nature Immunology, vol.5, issue.1, pp.64-73, 2004.
DOI : 10.1038/ni1022

G. Eberl and D. Littman, The role of the nuclear hormone receptor ROR??????t in the development of lymph nodes and Peyer's patches, Immunological Reviews, vol.8, issue.Suppl., pp.81-90, 2003.
DOI : 10.1034/j.1600-065X.2003.00074.x

G. Eberl and D. Littman, Thymic Origin of Intestinal ???? T Cells Revealed by Fate Mapping of ROR??t+ Cells, Science, vol.305, issue.5681, pp.248-251, 2004.
DOI : 10.1126/science.1096472

D. Bouskra, Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis, Nature, vol.194, issue.7221, pp.507-510, 2008.
DOI : 10.1038/nature07450

URL : https://hal.archives-ouvertes.fr/pasteur-01402759

G. Eberl, Opinion: Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway?, Nature Reviews Immunology, vol.167, issue.5, pp.413-420, 2005.
DOI : 10.1073/pnas.93.20.11019

P. Hjelmstrom, Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines, J Leukoc Biol, vol.69, pp.331-339, 2001.

F. Aloisi and R. Pujol-borrell, Lymphoid neogenesis in chronic inflammatory diseases, Nature Reviews Immunology, vol.68, issue.3, pp.205-217, 2006.
DOI : 10.1006/clin.1993.1169

J. Moyron-quiroz, Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity, Nature Medicine, vol.167, issue.9, pp.927-934, 2004.
DOI : 10.1172/JCI200319188

S. Fukuyama, Initiation of NALT Organogenesis Is Independent of the IL-7R, LT??R, and NIK Signaling Pathways but Requires the Id2 Gene and CD3???CD4+CD45+ Cells, Immunity, vol.17, issue.1, pp.31-40, 2002.
DOI : 10.1016/S1074-7613(02)00339-4

E. Scandella, Restoration of lymphoid organ integrity through the interaction of lymphoid tissue???inducer cells with stroma of the T cell zone, Nature Immunology, vol.72, issue.6, pp.667-675, 2008.
DOI : 10.1002/1521-4141(200001)30:1<185::AID-IMMU185>3.0.CO;2-L

P. Lane, F. Gaspal, and M. Kim, Opinion: Two sides of a cellular coin: CD4+CD3??? cells regulate memory responses and lymph-node organization, Nature Reviews Immunology, vol.13, issue.8, pp.655-660, 2005.
DOI : 10.1038/ni0304-233

C. Langrish, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, The Journal of Experimental Medicine, vol.71, issue.2, pp.233-240, 2005.
DOI : 10.1038/nri802

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212798

I. Ivanov, The Orphan Nuclear Receptor ROR??t Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells, Cell, vol.126, issue.6, pp.1121-1133, 2006.
DOI : 10.1016/j.cell.2006.07.035

M. Michel, Critical role of ROR-??t in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation, Proceedings of the National Academy of Sciences, vol.105, issue.50, pp.19845-19850, 2008.
DOI : 10.1073/pnas.0806472105

H. Takatori, Lymphoid tissue inducer???like cells are an innate source of IL-17 and IL-22, The Journal of Experimental Medicine, vol.206, issue.1, pp.35-41, 2009.
DOI : 10.1023/A:1013063514007

S. Sawa, ROR??t+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota, Nature Immunology, vol.204, issue.4, pp.320-326, 2011.
DOI : 10.1038/ni.2002

G. Sonnenberg, L. Monticelli, M. Elloso, L. Fouser, and D. Artis, CD4+ Lymphoid Tissue-Inducer Cells Promote Innate Immunity in the Gut, Immunity, vol.34, issue.1, pp.122-134, 2011.
DOI : 10.1016/j.immuni.2010.12.009

M. Cella, A human natural killer cell subset provides an innate source of IL-22

J. Wiley, &. Sons, and A. @bullet, for mucosal immunity, Immunological Reviews Nature, vol.245, issue.457, pp.722-725, 2009.

N. Crellin, S. Trifari, C. Kaplan, T. Cupedo, and H. Spits, lineage distinct from conventional natural killer cells, The Journal of Experimental Medicine, vol.207, issue.2, pp.281-290, 2010.
DOI : 10.1038/nm1720

T. Cupedo, Human fetal lymphoid tissue???inducer cells are interleukin 17???producing precursors to RORC+ CD127+ natural killer???like cells, Nature Immunology, vol.12, issue.1, pp.66-74, 2009.
DOI : 10.1038/ni.1668

S. Sanos, ROR??t and commensal microflora are required for the differentiation of mucosal interleukin 22???producing NKp46+ cells, Nature Immunology, vol.203, issue.1, pp.83-91, 2009.
DOI : 10.1038/ni.1684

C. Luci, Influence of the transcription factor ROR??t on the development of NKp46+ cell populations in gut and skin, Nature Immunology, vol.181, issue.1, pp.75-82, 2009.
DOI : 10.1038/ni.1681

N. Satoh-takayama, Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense, Immunity, vol.29, issue.6, pp.958-970, 2008.
DOI : 10.1016/j.immuni.2008.11.001

URL : https://hal.archives-ouvertes.fr/pasteur-01402754

L. Zenewicz, G. Yancopoulos, D. Valenzuela, A. Murphy, S. Stevens et al., Innate and Adaptive Interleukin-22 Protects Mice from Inflammatory Bowel Disease, Immunity, vol.29, issue.6, pp.947-957, 2008.
DOI : 10.1016/j.immuni.2008.11.003

URL : http://doi.org/10.1016/j.immuni.2008.11.003

S. Sawa, Lineage Relationship Analysis of ROR??t+ Innate Lymphoid Cells, Science, vol.330, issue.6004, pp.665-669, 2010.
DOI : 10.1126/science.1194597

URL : https://hal.archives-ouvertes.fr/pasteur-01402753

N. Satoh-takayama, S. Lesjean-pottier, S. Sawa, C. Vosshenrich, G. Eberl et al., Lymphotoxin-?? receptor-independent development of intestinal IL-22-producing NKp46+ innate lymphoid cells, European Journal of Immunology, vol.9, issue.3, pp.780-786, 2011.
DOI : 10.1002/eji.201040851

URL : https://hal.archives-ouvertes.fr/pasteur-01402741

G. Eberl, Immunology: Close encounters of the second type, Nature, vol.464, issue.7293, pp.1285-1286, 2010.
DOI : 10.1038/4641285a

URL : https://hal.archives-ouvertes.fr/pasteur-00509638

H. Spits, D. Santo, and J. , The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nature Immunology, vol.169, issue.1, pp.21-27, 2011.
DOI : 10.1016/j.molimm.2004.06.010

D. Neill, Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity, Nature, vol.33, issue.7293, pp.1367-1370, 2010.
DOI : 10.1038/nature08900

K. Moro, Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells, Nature, vol.117, issue.7280, pp.540-544, 2009.
DOI : 10.1038/nature08636

R. Mebius, The Fetal Liver Counterpart of Adult Common Lymphoid Progenitors Gives Rise to All Lymphoid Lineages, CD45+CD4+CD3- Cells, As Well As Macrophages, The Journal of Immunology, vol.166, issue.11, pp.6593-6601, 2001.
DOI : 10.4049/jimmunol.166.11.6593

H. Yoshida, Expression of ??4??7 Integrin Defines a Distinct Pathway of Lymphoid Progenitors Committed to T Cells, Fetal Intestinal Lymphotoxin Producer, NK, and Dendritic Cells, The Journal of Immunology, vol.167, issue.5, pp.2511-2521, 2001.
DOI : 10.4049/jimmunol.167.5.2511

K. Honda, Molecular Basis for Hematopoietic/Mesenchymal Interaction during Initiation of Peyer's Patch Organogenesis, The Journal of Experimental Medicine, vol.129, issue.5
DOI : 10.1038/11943

K. Ansel, A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, vol.406, pp.309-314, 2000.

D. Finke, H. Acha-orbea, A. Mattis, M. Lipp, and J. Kraehenbuhl, CD4+CD3??? Cells Induce Peyer's Patch Development, Immunity, vol.17, issue.3, pp.363-373, 2002.
DOI : 10.1016/S1074-7613(02)00395-3

URL : http://doi.org/10.1016/s1074-7613(02)00395-3

S. Van-de-pavert, Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation, Nature Immunology, vol.173, issue.11, pp.1193-1199, 2009.
DOI : 10.1038/ni.1789

S. Nishikawa, H. Hashi, K. Honda, S. Fraser, and H. Yoshida, Inflammation, a prototype for organogenesis of the lymphopoietic/hematopoietic system, Current Opinion in Immunology, vol.12, issue.3, pp.342-345, 2000.
DOI : 10.1016/S0952-7915(00)00097-2

M. Alimzhanov, Abnormal development of secondary lymphoid tissues in lymphotoxin ??-deficient mice, Proceedings of the National Academy of Sciences, vol.94, issue.17, pp.9302-9307, 1997.
DOI : 10.1073/pnas.94.17.9302

D. Togni and P. , Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin, Science, vol.264, issue.5159, pp.703-707, 1994.
DOI : 10.1126/science.8171322

A. Futterer, K. Mink, A. Luz, M. Kosco-vilbois, and K. Pfeffer, The Lymphotoxin ?? Receptor Controls Organogenesis and Affinity Maturation in Peripheral Lymphoid Tissues, Immunity, vol.9, issue.1, pp.59-70, 1998.
DOI : 10.1016/S1074-7613(00)80588-9

P. Rennert, J. Browning, R. Mebius, F. Mackay, and P. Hochman, Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs, Journal of Experimental Medicine, vol.184, issue.5, pp.1999-2006, 1996.
DOI : 10.1084/jem.184.5.1999

P. Rennert, D. James, F. Mackay, J. Browning, and P. Hochman, Lymph Node Genesis Is Induced by Signaling through the Lymphotoxin ?? Receptor, Immunity, vol.9, issue.1, pp.71-79, 1998.
DOI : 10.1016/S1074-7613(00)80589-0

E. Dejardin, The Lymphotoxin-?? Receptor Induces Different Patterns of Gene Expression via Two NF-??B Pathways, Immunity, vol.17, issue.4, pp.525-535, 2002.
DOI : 10.1016/S1074-7613(02)00423-5

H. Yoshida, Different Cytokines Induce Surface Lymphotoxin-???? on IL-7 Receptor-?? Cells that Differentially Engender Lymph Nodes and Peyer's Patches, Immunity, vol.17, issue.6, pp.823-833, 2002.
DOI : 10.1016/S1074-7613(02)00479-X

URL : http://doi.org/10.1016/s1074-7613(02)00479-x

T. Katakai, Organizer-Like Reticular Stromal Cell Layer Common to Adult Secondary Lymphoid Organs, The Journal of Immunology, vol.181, issue.9, pp.6189-6200, 2008.
DOI : 10.4049/jimmunol.181.9.6189

V. Kumar, Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway, Blood, vol.115, issue.23, pp.4725-4733, 2010.
DOI : 10.1182/blood-2009-10-250118

M. Kim, CD4+CD3??? Accessory Cells Costimulate Primed CD4 T Cells through OX40 and CD30 at Sites Where T Cells Collaborate with B Cells, Immunity, vol.18, issue.5, pp.643-654, 2003.
DOI : 10.1016/S1074-7613(03)00110-9

M. Colonna, Interleukin-22-Producing Natural Killer Cells and Lymphoid Tissue Inducer-like Cells in Mucosal Immunity, Immunity, vol.31, issue.1, pp.15-23, 2009.
DOI : 10.1016/j.immuni.2009.06.008

Y. Kanamori, Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop, Journal of Experimental Medicine, vol.184, issue.4, pp.1449-1459, 1996.
DOI : 10.1084/jem.184.4.1449

K. Suzuki, Gut Cryptopatches, Immunity, vol.13, issue.5, pp.691-702, 2000.
DOI : 10.1016/S1074-7613(00)00068-6

URL : http://doi.org/10.1016/s1074-7613(00)00068-6

F. Lambolez, Characterization of T Cell Differentiation in the Murine Gut, The Journal of Experimental Medicine, vol.5, issue.4, pp.437-449, 2002.
DOI : 10.1002/eji.1830270229

C. Vonarbourg, Regulated Expression of Nuclear Receptor ROR??t Confers Distinct Functional Fates to NK Cell Receptor-Expressing ROR??t+ Innate Lymphocytes, Immunity, vol.33, issue.5, pp.736-751, 2010.
DOI : 10.1016/j.immuni.2010.10.017

R. Mebius, Organogenesis of lymphoid tissues, Nature Reviews Immunology, vol.3, issue.4, pp.292-303, 2003.
DOI : 10.1038/nri1054

K. Wolk, IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis, European Journal of Immunology, vol.278, issue.5, pp.1309-1323, 2006.
DOI : 10.1002/eji.200535503

S. Liang, Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides, The Journal of Experimental Medicine, vol.203, issue.10, pp.2271-2279, 2006.
DOI : 10.1016/j.intimp.2004.01.010

H. Pan, F. Hong, S. Radaeva, and B. Gao, Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligandinduced injury via activation of STAT3, Cell Mol Immunol, vol.1, pp.43-49, 2004.

L. Zenewicz, G. Yancopoulos, D. Valenzuela, A. Murphy, M. Karow et al., Interleukin-22 but Not Interleukin-17 Provides Protection to Hepatocytes during Acute Liver Inflammation, Immunity, vol.27, issue.4, pp.647-659, 2007.
DOI : 10.1016/j.immuni.2007.07.023

URL : http://doi.org/10.1016/j.immuni.2007.07.023

P. Ye, Requirement of Interleukin 17 Receptor Signaling for Lung Cxc Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense, The Journal of Experimental Medicine, vol.13, issue.4, pp.519-527, 2001.
DOI : 10.4049/jimmunol.165.11.6107

S. Khader, S. Gaffen, and J. Kolls, Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa, Mucosal Immunology, vol.177, issue.5, pp.403-411, 2009.
DOI : 10.1007/s00011-007-6187-2

M. Lochner, Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of ROR??t and LTi cells, The Journal of Experimental Medicine, vol.14, issue.1, pp.125-134, 2011.
DOI : 10.1097/01.MIB.0000218764.06959.91

S. Buonocore, Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology, Nature, vol.148, issue.7293, pp.1371-1375, 2010.
DOI : 10.1038/nature08949

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796764

J. Sprent, D. Tough, and S. Sun, Factors controlling the turnover of T memory cells, Immunological Reviews, vol.273, issue.1, pp.79-85, 1997.
DOI : 10.1084/jem.184.4.1555

M. Brigl, Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection, The Journal of Experimental Medicine, vol.163, issue.6, pp.1163-1177, 2011.
DOI : 10.1371/journal.ppat.1000106

N. Crellin, S. Trifari, C. Kaplan, N. Satoh-takayama, D. Santo et al., Regulation of Cytokine Secretion in Human CD127+ LTi-like Innate Lymphoid Cells by Toll-like Receptor 2, Immunity, vol.33, issue.5, pp.752-764, 2010.
DOI : 10.1016/j.immuni.2010.10.012

E. Tomasello, M. Blery, F. Vely, and E. Vivier, Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells, Seminars in Immunology, vol.12, issue.2, pp.139-147, 2000.
DOI : 10.1006/smim.2000.0216

R. Mailliard, Dendritic Cells Mediate NK Cell Help for Th1 and CTL Responses: Two-Signal Requirement for the Induction of NK Cell Helper Function, The Journal of Immunology, vol.171, issue.5, pp.2366-2373, 2003.
DOI : 10.4049/jimmunol.171.5.2366

D. Cua, Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain, Nature, vol.1, issue.6924, pp.744-748, 2003.
DOI : 10.1038/nature01355

M. Lochner, T cells, The Journal of Experimental Medicine, vol.205, issue.6, pp.1381-1393, 2008.
DOI : 10.1084/jem.20071451

URL : https://hal.archives-ouvertes.fr/pasteur-01402753

E. Lockhart, A. Green, and J. Flynn, IL-17 Production Is Dominated by ???? T Cells rather than CD4 T Cells during Mycobacterium tuberculosis Infection, The Journal of Immunology, vol.177, issue.7, pp.4662-4669, 2006.
DOI : 10.4049/jimmunol.177.7.4662

C. Roark, J. French, M. Taylor, A. Bendele, W. Born et al., Exacerbation of Collagen-Induced Arthritis by Oligoclonal, IL-17-Producing ???? T Cells, The Journal of Immunology, vol.179, issue.8, pp.5576-5583, 2007.
DOI : 10.4049/jimmunol.179.8.5576

S. Hamada, IL-17A Produced by ???? T Cells Plays a Critical Role in Innate Immunity against Listeria monocytogenes Infection in the Liver, The Journal of Immunology, vol.181, issue.5, pp.3456-3463, 2008.
DOI : 10.4049/jimmunol.181.5.3456

M. Michel, iNKT cell population involved in airway neutrophilia, The Journal of Experimental Medicine, vol.17, issue.5, pp.995-1001, 2007.
DOI : 10.1002/eji.200535268

URL : https://hal.archives-ouvertes.fr/hal-00135759

T. Korn, E. Bettelli, M. Oukka, and V. Kuchroo, IL-17 and Th17 Cells, Annual Review of Immunology, vol.27, issue.1, pp.485-517, 2009.
DOI : 10.1146/annurev.immunol.021908.132710

K. Jensen, Thymic Selection Determines ???? T Cell Effector Fate: Antigen-Naive Cells Make Interleukin-17 and Antigen-Experienced Cells Make Interferon ??, Immunity, vol.29, issue.1, pp.90-100, 2008.
DOI : 10.1016/j.immuni.2008.04.022

URL : http://doi.org/10.1016/j.immuni.2008.04.022

Y. Zheng, Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis, Nature, vol.102, issue.7128, pp.648-651, 2007.
DOI : 10.1038/nature05505

M. Mcgeachy, The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17???producing effector T helper cells in vivo, Nature Immunology, vol.177, issue.3, pp.314-324, 2009.
DOI : 10.1056/NEJMoa062382

P. Ahern, Interleukin-23 Drives Intestinal Inflammation through Direct Activity on T Cells, Immunity, vol.33, issue.2, pp.279-288, 2010.
DOI : 10.1016/j.immuni.2010.08.010

URL : http://doi.org/10.1016/j.immuni.2011.02.018

D. Yen, IL-23 is essential for T cell???mediated colitis and promotes inflammation via IL-17 and IL-6, Journal of Clinical Investigation, vol.116, issue.5, pp.1310-1316, 2006.
DOI : 10.1172/JCI21404

M. Mcgeachy, TGF-?? and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell???mediated pathology, Nature Immunology, vol.22, issue.12, pp.1390-1397, 2007.
DOI : 10.1038/ni1539

F. Petermann, ???? T Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism, Immunity, vol.33, issue.3, pp.351-363, 2010.
DOI : 10.1016/j.immuni.2010.08.013

C. Sutton, C. Brereton, B. Keogh, K. Mills, and E. Lavelle, A crucial role for interleukin (IL)-1 in the induction of IL-17???producing T cells that mediate autoimmune encephalomyelitis, The Journal of Experimental Medicine, vol.203, issue.7, pp.1685-1691, 2006.
DOI : 10.1074/jbc.M308809200

T. Hughes, Interleukin-1?? Selectively Expands and Sustains Interleukin-22+ Immature Human Natural Killer Cells in Secondary Lymphoid Tissue, Immunity, vol.32, issue.6, pp.803-814, 2010.
DOI : 10.1016/j.immuni.2010.06.007

J. Duan, H. Chung, E. Troy, and D. Kasper, Microbial Colonization Drives Expansion of IL-1 Receptor 1-Expressing and IL-17-Producing ??/?? T Cells, Cell Host & Microbe, vol.7, issue.2, pp.140-150, 2010.
DOI : 10.1016/j.chom.2010.01.005

C. Sutton, S. Lalor, C. Sweeney, C. Brereton, E. Lavelle et al., Interleukin-1 and IL-23 Induce Innate IL-17 Production from ???? T Cells, Amplifying Th17 Responses and Autoimmunity, Immunity, vol.31, issue.2, pp.331-341, 2009.
DOI : 10.1016/j.immuni.2009.08.001

URL : http://doi.org/10.1016/j.immuni.2009.08.001

P. Mangan, Transforming growth factor-?? induces development of the TH17 lineage, Nature, vol.183, issue.7090, pp.231-234, 2006.
DOI : 10.1038/nature04754

E. Bettelli, Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature, vol.31, issue.7090, pp.235-238, 2006.
DOI : 10.1038/nature04753

J. Do, Cutting Edge: Spontaneous Development of IL-17???Producing ???? T Cells in the Thymus Occurs via a TGF-??1???Dependent Mechanism, The Journal of Immunology, vol.184, issue.4, pp.1675-1679, 2010.
DOI : 10.4049/jimmunol.0903539

T. Korn, IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells, Nature, vol.197, issue.7152, pp.484-487, 2007.
DOI : 10.1038/nature05970

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805028

R. Nurieva, Essential autocrine regulation by IL-21 in the generation of inflammatory T cells, Nature, vol.158, issue.7152, pp.480-483, 2007.
DOI : 10.1038/nature05969

L. Zhou, IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways, Nature Immunology, vol.178, issue.9, pp.967-974, 2007.
DOI : 10.1128/MCB.24.6.2385-2396.2004

B. Martin, K. Hirota, D. Cua, B. Stockinger, and M. Veldhoen, Interleukin-17-Producing ???? T Cells Selectively Expand in Response to Pathogen Products and Environmental Signals, Immunity, vol.31, issue.2, pp.321-330, 2009.
DOI : 10.1016/j.immuni.2009.06.020

J. Ribot, Cutting Edge: Adaptive Versus Innate Receptor Signals Selectively Control the Pool Sizes of Murine IFN-??- or IL-17-Producing ???? T Cells upon Infection, The Journal of Immunology, vol.185, issue.11, pp.6421-6425, 2010.
DOI : 10.4049/jimmunol.1002283

P. Simonian, F. Wehrmann, C. Roark, W. Born, O. Brien et al., ???? T cells protect against lung fibrosis via IL-22, The Journal of Experimental Medicine, vol.154, issue.10, pp.2239-2253, 2010.
DOI : 10.1038/nm1720

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947077

J. Doisne, Cutting Edge: Crucial Role of IL-1 and IL-23 in the Innate IL-17 Response of Peripheral Lymph Node NK1.1- Invariant NKT Cells to Bacteria, The Journal of Immunology, vol.186, issue.2, pp.662-666, 2011.
DOI : 10.4049/jimmunol.1002725

URL : https://hal.archives-ouvertes.fr/hal-00591927

J. Doisne, Skin and Peripheral Lymph Node Invariant NKT Cells Are Mainly Retinoic Acid Receptor-Related Orphan Receptor ??t+ and Respond Preferentially under Inflammatory Conditions, The Journal of Immunology, vol.183, issue.3, pp.2142-2149, 2009.
DOI : 10.4049/jimmunol.0901059

URL : https://hal.archives-ouvertes.fr/pasteur-00509628

I. Ivanov, Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine, Cell Host & Microbe, vol.4, issue.4, pp.337-349, 2008.
DOI : 10.1016/j.chom.2008.09.009

M. Lochner, Restricted Microbiota and Absence of Cognate TCR Antigen Leads to an Unbalanced Generation of Th17 Cells, The Journal of Immunology, vol.186, issue.3
DOI : 10.4049/jimmunol.1001723

URL : https://hal.archives-ouvertes.fr/pasteur-00564664

K. Geddes, Identification of an innate T helper type 17 response to intestinal bacterial pathogens, Nature Medicine, vol.178, issue.7, pp.837-844, 2011.
DOI : 10.1111/j.1462-5822.2007.01071.x

H. Wu, Gut-Residing Segmented Filamentous Bacteria Drive Autoimmune Arthritis via T Helper 17 Cells, Immunity, vol.32, issue.6, pp.815-827, 2010.
DOI : 10.1016/j.immuni.2010.06.001

URL : http://doi.org/10.1016/j.immuni.2010.06.001

R. Duerr, A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene, Science, vol.314, issue.5804, pp.1461-1463, 2006.
DOI : 10.1126/science.1135245

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410764

S. Bloom, Commensal Bacteroides species induce colitis in host-genotypespecific fashion in a mouse model of Eberl AE RORct + cells

H. Uhlig and F. Powrie, Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease, European Journal of Immunology, vol.129, issue.8, pp.2021-2026, 2009.
DOI : 10.1002/eji.200939602

L. Solt, Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand, Nature, vol.2, issue.7344, pp.491-494, 2011.
DOI : 10.1038/nature10075

J. Huh, Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing ROR??t activity, Nature, vol.139, issue.7344, pp.486-490, 2011.
DOI : 10.1038/nature09978

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172133

G. Eberl, A new vision of immunity: homeostasis of the superorganism, Mucosal Immunology, vol.41, issue.5, pp.450-460, 2010.
DOI : 10.1016/j.immuni.2008.05.009

URL : https://hal.archives-ouvertes.fr/pasteur-00509637

S. Roberts, Y. Gueguen, J. De-lorgeril, and F. Goetz, Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure, Developmental & Comparative Immunology, vol.32, issue.9, pp.1099-1104, 2008.
DOI : 10.1016/j.dci.2008.02.006

T. Hibino, The immune gene repertoire encoded in the purple sea urchin genome, Developmental Biology, vol.300, issue.1, pp.349-365, 2006.
DOI : 10.1016/j.ydbio.2006.08.065

J. Rast, L. Smith, M. Loza-coll, T. Hibino, and G. Litman, Genomic Insights into the Immune System of the Sea Urchin, Science, vol.314, issue.5801, pp.952-956, 2006.
DOI : 10.1126/science.1134301

A. Cossarizza, Earthworm Leukocytes That Are Not Phagocytic and Cross-React with Several Human Epitopes Can Kill Human Tumor Cell Lines, Experimental Cell Research, vol.224, issue.1, pp.174-182, 1996.
DOI : 10.1006/excr.1996.0125

C. Franceschi, A. Cossarizza, D. Monti, and E. Ottaviani, Cytotoxicity and immunocyte markers in cells from the freshwater snailPlanorbarius corneus (L.) (Gastropoda pulmonata): implications for the evolution of natural killer cells, European Journal of Immunology, vol.31, issue.2, pp.489-493, 1991.
DOI : 10.1002/eji.1830210235

K. Khalturin, M. Becker, B. Rinkevich, and T. Bosch, Urochordates and the origin of natural killer cells: Identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus, Proceedings of the National Academy of Sciences, vol.100, issue.2, pp.622-627, 2003.
DOI : 10.1073/pnas.0234104100

I. Zucchetti, R. Marino, M. Pinto, J. Lambris, D. Pasquier et al., ciCD94-1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures, Differentiation, vol.76, issue.3, pp.267-282, 2008.
DOI : 10.1111/j.1432-0436.2007.00214.x

R. Savan, S. Ravichandran, J. Collins, M. Sakai, and H. Young, Structural conservation of interferon gamma among vertebrates, Cytokine & Growth Factor Reviews, vol.20, issue.2, pp.115-124, 2009.
DOI : 10.1016/j.cytogfr.2009.02.006

M. Flores, C. Hall, A. Jury, K. Crosier, and P. Crosier, The zebrafish retinoid-related orphan receptor (ror) gene family, Gene Expression Patterns, vol.7, issue.5, pp.535-543, 2007.
DOI : 10.1016/j.modgep.2007.02.001

K. Nagatomo, T. Ishibashi, Y. Satou, N. Satoh, and S. Fujiwara, Retinoic acid affects gene expression and morphogenesis without upregulating the retinoic acid receptor in the ascidian Ciona intestinalis, Mechanisms of Development, vol.120, issue.3, pp.363-372, 2003.
DOI : 10.1016/S0925-4773(02)00441-0

Y. Wang, G. Wang, and G. Leblanc, Cloning and characterization of the retinoid X receptor from a primitive crustacean Daphnia magna, General and Comparative Endocrinology, vol.150, issue.2, pp.309-318, 2007.
DOI : 10.1016/j.ygcen.2006.08.002

Z. Kostrouch, M. Kostrouchova, W. Love, E. Jannini, J. Piatigorsky et al., Retinoic acid X receptor in the diploblast, Tripedalia cystophora, Proceedings of the National Academy of Sciences, vol.95, issue.23, pp.13442-13447, 1998.
DOI : 10.1073/pnas.95.23.13442

A. Holt, S. Mitra, A. Van-der-sar, A. Alnabulsi, C. Secombes et al., Discovery of zebrafish (Danio rerio) interleukin-23 alpha (IL-23??) chain, a subunit important for the formation of IL-23, a cytokine involved in the development of Th17 cells and inflammation, Molecular Immunology, vol.48, issue.8, pp.981-991, 2011.
DOI : 10.1016/j.molimm.2010.12.012

S. Mutoloki, G. Cooper, I. Marjara, B. Koop, and O. Evensen, High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines, BMC Genomics, vol.11, issue.1, p.336, 2010.
DOI : 10.1186/1471-2164-11-336

C. Ribeiro, Trypanosomiasis-Induced Th17-Like Immune Responses in Carp, PLoS ONE, vol.5, issue.9, p.13012, 2010.
DOI : 10.1371/journal.pone.0013012.t003

URL : http://doi.org/10.1371/journal.pone.0013012

L. Dethlefsen, M. Mcfall-ngai, and D. Relman, An ecological and evolutionary perspective on human???microbe mutualism and disease, Nature, vol.44, issue.7164, pp.811-818, 2007.
DOI : 10.1038/nature06245

M. Denny, Invertebrate mucous secretions: functional alternatives to vertebrate paradigms, Symp Soc Exp Biol, vol.43, pp.337-366, 1989.

E. Hsu and M. Flajnik, Du Pasquier L. A third immunoglobulin class in amphibians, J Immunol, vol.135, pp.1998-2004, 1985.

R. Mussmann, D. Pasquier, L. Hsu, and E. , IsXenopus IgX an analog of IgA?, European Journal of Immunology, vol.2, issue.12, pp.2823-2830, 1996.
DOI : 10.1002/eji.1830261205

M. Tsuji, Requirement for Lymphoid Tissue-Inducer Cells in Isolated Follicle Formation and T Cell-Independent Immunoglobulin A Generation in the Gut, Immunity, vol.29, issue.2, pp.261-271, 2008.
DOI : 10.1016/j.immuni.2008.05.014

G. Eberl, From induced to programmed lymphoid tissues: the long road to preempt pathogens, Trends in Immunology, vol.28, issue.10, pp.423-428, 2007.
DOI : 10.1016/j.it.2007.07.009

URL : https://hal.archives-ouvertes.fr/pasteur-00509617

C. Ardavin, A. Zapata, A. Villena, and M. Solas, Gut-Associated lymphoid tissue (GALT) in the amphibian urodelePleurodeles waltl, Journal of Morphology, vol.3, issue.1, pp.35-41, 1982.
DOI : 10.1002/jmor.1051730105

M. Borysenko and E. Cooper, Lymphoid tissue in the snapping turtle,Chelydra serpentina, Journal of Morphology, vol.165, issue.4, pp.487-497, 1972.
DOI : 10.1002/jmor.1051380408

A. Befus, N. Johnston, G. Leslie, and J. Bienenstock, Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer's patches, J Immunol, vol.125, pp.2626-2632, 1980.

A. Zapata and E. Cooper, The Immune System: Comparative Histophysiology, 1990.

D. Pasquier and L. , Meeting the Demand for Innate and Adaptive Immunities During Evolution, Scandinavian Journal of Immunology, vol.156, issue.1, pp.39-48, 2005.
DOI : 10.1016/S1360-1385(02)02311-7

J. Hofmann, M. Greter, D. Pasquier, L. Becher, and B. , B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution, Trends in Immunology, vol.31, issue.4, pp.144-153, 2010.
DOI : 10.1016/j.it.2010.01.003