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Abstract

Background: Studies of patients with paraneoplastic neurologic disorders (PND) have revealed that apoptotic tumor serves
as a potential potent trigger for the initiation of naturally occurring tumor immunity. The purpose of this study was to assess
the feasibility, safety, and immunogenicity of an apoptotic tumor-autologous dendritic cell (DC) vaccine.

Methods and Findings: We have modeled PND tumor immunity in a clinical trial in which apoptotic allogeneic prostate
tumor cells were used to generate an apoptotic tumor-autologous dendritic cell vaccine. Twenty-four prostate cancer
patients were immunized in a Phase I, randomized, single-blind, placebo-controlled study to assess the safety and
immunogenicity of this vaccine. Vaccinations were safe and well tolerated. Importantly, we also found that the vaccine was
immunogenic, inducing delayed type hypersensitivity (DTH) responses and CD4+ and CD8+ T cell proliferation, with no
effect on FoxP3+ regulatory T cells. A statistically significant increase in T cell proliferation responses to prostate tumor cells
in vitro (p = 0.002), decrease in prostate specific antigen (PSA) slope (p = 0.016), and a two-fold increase in PSA doubling time
(p = 0.003) were identified when we compared data before and after vaccination.

Conclusions: An apoptotic cancer cell vaccine modeled on naturally occurring tumor immune responses in PND patients
provides a safe and immunogenic tumor vaccine. (ClinicalTrials.gov number NCT00289341).
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Introduction

Tumor immunity in patients with paraneoplastic neurologic

disorders (PND) have been studied with the hope of uncovering

principles that can be applied to the general population of cancer

patients[1,2]. These studies demonstrated tumor antigen-specific

CD8+ T cells in the peripheral blood of PND patients[3,4], but

also generated a paradox. PND antigens are normally expressed in

the brain, and are ectopically expressed in tumors, but are not

expressed in dendritic cells (DCs) that are necessary to prime naı̈ve

T cell responses.[5] Based on observations made with lupus

antigens[6], we hypothesized that apoptotic cells might serve as an

effective means of antigen transfer into DCs and presentation on

MHC I for the activation of CD8+ T cells[7]. This proved to be

correct for both tumor[3] and viral antigens[8], and it is likely that

phagocytosis of apoptotic cells serve as a general means by which

the immune system surveys antigens throughout life. Insights from

studying natural tumor immunity in PND provide a compelling

base upon which to model clinical studies[2,9,10].

Several observations support the suggestion that apoptotic

tumor cells may serve as a potent source of antigen for stimulating

host immune responses in vivo. Theoretically, all potential tumor

antigens within an apoptotic tumor cell, and multiple epitopes

from each antigen, can be cross-presented by DCs, where

processed antigen may be placed on all (typically six) MHC I

alleles. This offers considerable advantages over peptide-pulsed

DC protocols, in which the investigator must have knowledge of

the tumor antigen and must choose specific MHC I-restricted

peptides for antigen stimulation. Antigen presentation from

apoptotic cells has been estimated to be 10,000–50,000 more
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efficient than free peptide in loading the MHC molecules of a

DC[11,12]. Apoptotic material is processed by a natural pathway:

apoptotic cells are internalized by DC-restricted receptors,

including the avb5 integrin receptor[13], then processed within

DCs by distinct pathways[14]. These DCs then generate both

MHC I and MHC II peptide epitopes[13], leading to the

activation of both CD8+ and CD4+ T cells. Since the ability of

DCs cross-presenting apoptotic cells to activate effector CD8+ T

cells requires signals from CD4 helper cells[15], the ability of

apoptotic material to be loaded on both MHC I and MHC II

molecules is of particular importance in considering its potential in

immunotherapy.

DCs presenting apoptotic tumor cells stimulate T cell responses

in animals and in vitro[16]. Clinically, several studies have used

killed tumor cells in vaccine trials, including glial[17–21],

prostate[22], melanoma[23], breast[24], ovarian[25] and pediatric

solid tumor cells[26] (reviewed in [9,16,27]). These studies have

not focused on apoptotic death per se, but rather have killed tumor

cells by various means (e.g. freeze-thawing, or large amounts of

UVB and gamma irradiation), leading to incompletely character-

ized mixtures of necrotic and apoptotic cell death. Interpretation

of these studies is complicated by controversy regarding the

immunogenic potency of different forms of dead cells[28].

Nonetheless, some trials have indicated the potential for

immunologic and clinical responses to autologous DC presenting

dead tumor cells[19,23]. Here we set out to more precisely test the

relationship between induction of PND-like tumor immune

responses and development of a clinical vaccine. We induced

apoptotic death of LNCaP prostate cancer cells, and allowed them

to be phagocytosed by autologous DCs generated from prostate

cancer patients’ peripheral blood monocytes; such DCs were

previously shown to stimulate both CD8+ and CD4+ T cells in

vitro[29], and in a B16 mouse melanoma model DCs cross-

presenting apoptotic tumor were effective in preventing tumor

growth (Blachere et al., unpublished data). Here we report the

safety and immunogenicity of DC/apoptotic LNCaP prostate

tumor cells in a controlled study of 24 prostate cancer patients.

Results

Study Population
Twenty-four consecutive eligible patients were vaccinated with

DC/LNCaP, together with control vaccinations. A total of 28.4–

78.9 million (average 50.3 million) DCs cross-presenting apoptotic

LNCaP tumor cells were given per patient, divided over 4 doses,

each 2 weeks apart (Figure 1). At the time of study entry, 11 of 12

patients in Arm 1 and 10 of 12 patients in Arm 2 had only

biochemical relapse with no other evidence of metastatic disease

(Table 1). The mean age of patients was 62.566.7 and 65.769.2

years and the mean Gleason score at study entry was 7.25 and

7.17 in Arms 1 and 2, respectively.

DC vaccine characteristics
DCs were cocultured with LNCaP or LNCaP-M1 cells that

were .90% apoptotic (Figure 2). All DC vaccine preparations

administered met criteria for viability and maturity (Table 2 and

Figure 2). DC function was monitored by allo-MLR; DCs

stimulated 26105 allogeneic T cells to incorporate $105 CPM

of 3H-thymidine on day 5 after an 18-hour 3H thymidine pulse

(data not shown).

Safety
The incidence of injection-site and systemic reactions to vaccine

are presented in Table 3. No vaccine related serious adverse events

were observed. Only 1 toxicity was significantly different between

the placebo and vaccine groups in the single blind phase of the

study: grade 1 or 2 injections site reactions that occurred in 11 of

12 patients in the vaccine group (p,0.001), attributable to vaccine

(but not placebo) generating DTH-like responses. There was no

symptomatic evidence of autoimmune disease in any patient,

including vasculitis, thyroiditis, colitis, neurologic disease, endo-

crinopathy or cardiomyopathy.

Immune response
All patients who received the DC/keyhole limpet hemocyanin

(KLH) vaccine had a positive DTH response to KLH. None of the

24 patients had a response to LNCaP lysate at baseline (week 0).

All 24 patients were given LNCaP lysate as part of DTH panels at

weeks 3, 5, 7, and 9. Sixteen of 24 patients (67%) had a DTH

response to LNCaP lysate in at least 1 of these 4 time points, with

the highest proportion of patients (54.2%) responding to LNCaP

lysate at 2 weeks after the last booster (week 9). Responses were

maintained in 9 of 13 patients (69%) at 22 weeks after the last

booster (week 29, Figure 3). The responses to LNCaP lysate were

statistically significant at all time points with a 95% confidence

interval. Normal saline, given as a control, was negative at all time

points in all patients.

A 3H thymidine proliferation assay was used to assess the

reactivity of T cells to KLH protein and to prostate tumor cells

(either those used in vaccination (LNCaP) or to another prostate

tumor cell line (PC3)). Negative control antigens included

autologous monocytes and an irrelevant cell line (3T3). 3T3

infected with influenza was used as positive control. T cells were

collected at week 0 (pre-vaccine) leukapheresis and week 13 (post-

vaccine) leukapheresis (Figure 1). To be valid, each individual

proliferation assay must have had a detectable influenza response

pre- and post-vaccine. Two of 24 patients had no detectable

influenza response and thus were excluded from analysis. The 22

evaluable patients, considered as a group, had no statistically

significant difference in T cell response to influenza, pre- versus

post-vaccine (p = 0.310, data not shown). There was a statistically

significant T cell response to KLH post-vaccine vs pre-vaccine

(p = 0.008), as well as to apoptotic LNCaP (p = 0.017) and

apoptotic PC3 tumor cells (p = 0.011) (Figure 4a). There were no

statistically significant differences in pre- vs post-vaccine T cell

responses to antigen presenting cells (APCs) alone (p = 0.160), to

control antigens, 3T3 (p = 0.070) or autologous monocytes

(p = 0.156) (Table 4, Figure 4a and data not shown).

Based on the DTH data (Figure 3) and the 3H thymidine

proliferation data (Figure 4a), we calculated and ranked a DTH

index and a proliferation index to determine if there was an

association between the two. A positive correlation was found

(0.55 using the Spearman rank correlation test (p = 0.008)),

indicating that patients who had positive DTH responses to

LNCaP lysate also tended to have T cell proliferation responses to

apoptotic LNCaP cells in vitro.

The proliferation response was also assessed by CFSE dye

dilution assay[30]. In 5 of 6 patients, a CD8+ T cell response

specific for prostate antigens was observed (Figure 4b and data not

shown). We confirmed that all six patients tested also had a CD4+
T cell response to prostate antigens.

We considered the possibility that the increased T cell

proliferation response post vaccination could relate to a decline

in regulatory T cells in circulation. To determine the percent of

CD4+ T cells that are T regulatory cells in pre- and post-

vaccinated blood samples, PBMCs were stained and assessed for

Foxp3 expression (Figure 5). No difference (p = 0.924) was found

An Apoptotic Cancer Vaccine
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Figure 1. Study Design (CONSORT Diagram). Patients were screened and randomized into 1 of 2 arms, each with 12 patients. Patients in both
arms were blind during the vaccine/placebo phases until Week 8. Patients in Arm 1 continued into the post-vaccine phase while patients in Arm 2
crossed over into the vaccine phase before entering post-vaccine phase.
doi:10.1371/journal.pone.0012367.g001
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Table 1. Patient characteristics.

Pt Age Previous Treatments Clinical Status Gleason Score PSA at Study Entry

1 55 Leuprolide Acetate, Bicalutamide, Nilutamide CM/HR 8 0.69

2 80 RRP, Leuprolide Acetate, Bicalutamide BCR/HR 7 2.71

3 65 RRP, Salvage RT BCR 7 0.79

4 58 RRP BCR 6 0.49

5 64 RRP BCR 7 0.59

6 75 RRP CM 9 0.57

7 81 RT BCR 6 8.66

8 54 RRP, Salvage RT BCR 6 0.46

9 60 RRP, IL-2 and J-591 Ab Study, Testosterone Gel/ Leuprolide or Goserelin
Acetate/Docetaxel Study

BCR 7 7.56

10 57 Brachytherapy, Salvage RRP BCR 7 6.38

11 56 RRP, Salvage RT, Leuprolide Acetate, Bicalutamide BCR/HR 8 5.24

12 69 RRP, Salvage RT, Goserelin Acetate BCR/HR 7 0.86

13 63 RRP, Salvage, RT, Testosterone Gel/Leuprolide or Goserelin Acetate/
Docetaxel Study

BCR/HR 8 0.48

14 53 RRP, Salvage RT, Leuprolide Acetate LR/HR 8 0.94

15 57 RRP, Salvage RT, Leuprolide Acetate, Bicalutamide BCR 9 0.29

16 64 RRP BCR 7 15.27

17 68 RT, Testosterone Gel/Leuprolide or Goserelin Acetate/Docetaxel Study BCR 8 4.61

18 74 RRP BCR 6 40.25

19 67 RRP, Salvage RT BCR 7 5.02

20 63 RRP, Leuprolide Acetate, Bicalutamide BCR 7 2.15

21 59 RRP, Salvage RT BCR 7 0.62

22 70 RRP, Salvage RT BCR 7 1.75

23 55 RRP, Salvage RT BCR 7 0.44

24 68 RRP, Salvage RT BCR 7 1.27

Previous Treatments: RRP = Radical Retropubic Prostatectomy, RT = Radiation Therapy. Clinical Status: CM = Clinical Metastasis, HR = Hormone Refractory,
BCR = Biochemical Relapse, LR = Local Recurrence.
doi:10.1371/journal.pone.0012367.t001

Figure 2. Preparation of Vaccine. UV irradiation (+UV) specifically induced apoptosis in LNCaP cells as indicated by 96% Caspatag+ TOPRO+
staining 38 hours post UV. DC cocultured with apoptotic LNCaP cells (Vaccine) are mature, with .96% CD83 positive cells. Data shown is
representative of all 24 vaccines prepared.
doi:10.1371/journal.pone.0012367.g002
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Table 2. Dendritic cell characteristics.

Vaccine Groups % CD14 + Median (Interquartile Range) % CD83 + Median (Interquartile Range) % PI + Median (Interquartile Range)

DC/LNCaP 0.13 (0.83) 86.94 (8.86) 4.14 (5.87)

DC/LNCaP-M1 0.09 (0.48) 87.82 (6.86) 4.37 (4.69)

DC/KLH 0.09 (0.41) 96.19 (3.59) 1.25 (1.72)

DCs alone 0.17 (0.45) 96.41 (4.94) 1.52 (1.94)

Vaccine groups were prepared from patient monocytes as described. DCs were assessed for maturation by staining for expression of surface markers, CD14 and CD83,
and for viability using PI stain. Cells were assessed by flow cytometry on Day 8 prior to vaccine release. All vaccine groups administered met release criteria.
doi:10.1371/journal.pone.0012367.t002

Table 3. Adverse events.

Single Blind Unblinded

Arm 2 Placebo
Phase

Arm 1 Vaccine
Phase

Arm 2 Vaccine
Phase

Arm 1 and 2 Post-
Vaccine Phase

Total number of Adverse Events in each phase 80 120 90 76

No. Pts with at least 1 AE No. of pts (Total No. of pts) 12 (12) 12 (12) 12 (12) 22 (24)

RELATED TO VACCINE:

Adverse Events No. of events (No. of pts)

injection site reaction 2 (2) 22 (11) 29 (12) 0

injection site reaction (grade 2) 0 4 (2) 0 0

Serious Adverse Events No. of events (No. of pts) 0 0 0 0

NOT RELATED TO VACCINE:

Frequently Occurring Adverse Events (occurring $5 times in study) No. of events (No. of pts)

albumin, serum, low 0 1 (1) 4 (3) 0

albumin, urine, high 2 (1) 3 (3) 0 3 (3)

ALT, serum, high 3 (3) 4 (2) 0 2 (2)

ALT, serum, high (grade 2) 0 0 1 (1) 0

ANA, high 1 (1) 1 (1) 3 (3) 4 (4)

BUN, serum, high 1 (1) 4 (3) 2 (2) 1 (1)

chloride, serum, high 4 (4) 1 (1) 0 2 (2)

CO2, serum, low 4 (4) 3 (2) 2 (2) 1 (1)

creatinine, serum, high 1 (1) 3 (2) 2 (2) 2 (2)

diarrhea/loose stools 1 (1) 5 (3) 0 0

edema, lower extremities 2 (2) 0 3 (1) 1 (1)

eosinophils, high 3 (3) 1 (1) 1 (1) 1 (1)

fatigue 5 (5) 6 (5) 5 (4) 0

glucose, serum, high, non-fasting 5 (5) 6 (6) 2 (1) 7 (6)

ketones, urine, high 2 (2) 1 (1) 1 (1) 3 (3)

potassium, serum, high 3 (3) 0 6 (5) 1 (1)

potassium, serum, high (grade 2) 1 (1) 0 0 0

rash 2 (2) 2 (1) 0 3 (2)

URI 3 (3) 3 (3) 1 (1) 0

Serious Adverse Events No. of Events (No. of pts) 0 1 (1) 0 3 (1)

Hospitalization: Cardioversion for atrial fibrillation 0 1 (1) 0 0

Hospitalization: Urinary retention 0 0 0 1 (1)

Elective Hospitalization: Cholecystectomy 0 0 0 1 (1)

Elective Hospitalization: Inguinal hernia repair 0 0 0 1 (1)

Study visits during the placebo and vaccine phases are identical. Placebo injections consisted of vaccine vehicle only. All adverse events are Grade 1 unless otherwise
specified. There were no vaccine related serious adverse events. The only statistically significant adverse event was the number of patients having injection site
reactions between Arm 1 vaccine phase and Arm 2 pre-vaccine placebo phase (p = 0.001, Fisher’s exact test). All other adverse events listed are not statistically
significant (p$0.2 in all cases, Fisher’s exact test) between Arm 1 vaccine phase and Arm 2 pre-vaccine placebo phase.
doi:10.1371/journal.pone.0012367.t003
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in Foxp3 expression comparing pre- and post-vaccination CD4+ T

cells from 15 patients (Table 4).

PSA response
The prostate specific antigen doubling time (PSADT) was

calculated for each patient during each phase of study. The

median doubling time during the pre-vaccine phase was 4.5

months, and this increased to 5.4 and 8.9 months during the

vaccine and post-vaccine phases respectively. There were

statistically significant differences in PSADT between the pre-

and post-vaccine phases (p = 0.003) and between the vaccine and

post-vaccine phases (p,0.001) but not between the pre-vaccine

and vaccine phases (p = 0.915).

We also compared the slope of the PSA rise between the 3 study

phases. Eighteen of 23 (78%) evaluable patients had a decrease in

PSA slope between the pre- and post-vaccine phases. When

considering all 23 patients, there was a statistically significant

decrease in the PSA slope between the pre-vaccine and post-

vaccine phases of 20.093/month (p = 0.016, Figure 6 and

Table 5). There was no statistical difference in PSA slope between

the pre-vaccine and vaccine phases (20.018/month, p = 0.681) or

the vaccine and post-vaccine phases (20.075/month, p = 0.098).

We evaluated whether this PSA slope change might result from the

development of serum anti-PSA antibodies. Pre- and post-vaccine

serum was assessed by measuring serum antibody reactivity to

purified PSA protein on Western blot, using PSA monoclonal

antibodies as a positive control. We found no evidence for

antibody reactivity to PSA (data not shown). Nonetheless, we

cannot rule out that antibodies are not detectable due to antigen/

antibody complexes being formed and that these somehow aided

in clearing PSA from the serum.

We then stratified the study population with two more fixed

effects on a mixed model and conducted a likelihood ratio test; the

patients that had a DTH response to LNCaP lysate had a

significantly different PSA slope change when compared to those

that had no DTH response to LNCAP lysate (p = 0.004). Sixteen

of 24 patients had DTH responses to LNCaP in at least one time

point. This group of patients had a statistically significant change

in PSA slope between the pre-vaccine and post-vaccine phases

(20.105/month, p = 0.020, Table 6). Eight of 24 patients had no

response to LNCaP lysate at any time point, and these patients

had no statistically significant change in slope between the pre-and

post-vaccine phases (20.033/month, p = 0.631). When we strat-

ified the study population into 2 groups based on PSA value at

study entry, the likelihood ratio test indicated a significantly

different PSA slope change between these two groups (p,0.001).

With the mixed model, we found that those who had a PSA

$1 ng/ml at study entry (15 patients) had a significant PSA slope

change between pre- to post-vaccine phase (20.099/month,

p = 0.031, Table 6) while the patient subgroup that had a PSA

,1 ng/ml at study entry (8 patients) did not (20.078/month,

p = 0.279). Taken together, these data demonstrate that the study

patients taken as a group had a significant reduction in the rate of

rise of PSA after vaccination, and that this effect was particularly

evident in those with immunologic response and more readily

measurable disease.

Discussion

Patients with PND develop effective tumor suppression of

common cancer types[2] that are likely to be triggered by immune

recognition of ectopic expression of neuronal proteins by those

cancers. To trigger such immune responses, we hypothesized and

demonstrated that apoptotic tumor serves as a potent source of

antigen for presentation by APCs[7,29]. The focus of this study

was to evaluate the safety and immunogenicity of mimicking this

means of triggering tumor immunity by using prostate cancer

patients’ DCs cross-presenting apoptotic tumor cells as a cancer

vaccine.

Despite the conceptual link between the development of

apoptotic cells as a vaccine and tumor immunity in PND, we

Figure 3. DTH Responses. Vaccine induced DTH response to LNCaP cell lysates injected intradermally were measured at the indicated times. Week
1 was baseline, at which time no patients had DTH responses (data not shown). DTH responses were considered positive at $5 mm erythema read at
48 hours after placement. Bars indicate the number of patients with positive responses at each time point. Error bars represent 95% confidence
intervals. Dotted line represents trend of percentage of patients with positive responses at each time point. Statistically significant positive DTH
responses to LNCaP cell lysate appeared at Week 3 (first time point after baseline) and responses were still present in 9 of 13 patients (69%) at 22
weeks after the last booster dose (Week 29).
doi:10.1371/journal.pone.0012367.g003
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found no evidence that this approach triggered autoimmune

disease in our patients. We did note small ANA elevations post

vaccine in 5 patients (titer of 1:160 in one patient, #1:80 in four

patients) which resolved over time in 4/5 patients. However, we

also noted that of 7 patients with detectable ANA levels pre-

vaccination, 5 became lower after vaccination. Statistical analysis

of ANA changes pre versus post vaccine/placebo in Arm 1 versus

Arm 2 revealed no significant differences (Fisher’s exact test), and

we conclude that ANA changes were not clinically meaningful;

moreover, such transient responses have commonly been seen in

Figure 4. T cell proliferation response in vitro. Comparison of pre- and post-vaccine bulk T cell responses to prostate antigen. a. Apoptotic
tumor cells (LNCaP and PC3, or an irrelevant cell line (3T3)) or KLH protein were co-cultured with patient peripheral blood monocytes and syngeneic
bulk T cells obtained from patients pre- or post-vaccination. Monocytes without exogenous antigen (No Ag) or apoptotic 3T3 cells (Ctrl Ag), served as
negative controls. Proliferation was assessed on day 5 after an 18-hour 3H thymidine pulse. Data is presented for 22 of 24 patients. The difference in
proliferation (post- minus pre-vaccine) for each antigen group is shown in box plots. Values reported are average counts per minute (CPM) of
triplicate wells. The median difference for each antigen group is shown by the line in the box. Each patient who is an outlier is indicated by a unique
symbol. Statistically significant differences in pre-vaccine vs. post-vaccine T cell proliferative responses were found for KLH (p = 0.008), LNCaP
(p = 0.017) and PC3 (p = 0.011). b. Bulk T cells obtained post-vaccination were stained with CFSE and cultured with DCs cross-presenting prostate
antigens, LNCaP and PC3, or an irrelevant cell line (293 cells, Ctrl Ag). Cell proliferation on day 5, assessed by CFSE dye dilution, is shown on the x-axis
and CD8 expression is shown on the y-axis. Percentages shown represent CD8+ cells that have divided within the bulk T cell population. Four of five
additional patients tested showed similar CD8+ responses; data shown are for patient #15.
doi:10.1371/journal.pone.0012367.g004
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DC based vaccines[26,31,32]. One reason that we chose prostate

cancer as an initial tumor for study using this vaccine approach is

that these tumors are rarely associated with PND. Despite the

safety of the vaccine here, caution is warranted in extending this

approach to patients harboring tumors known to be associated

with PND (for example gynecologic tumors expressing the cdr2 or

Nova antigens and small cell lung cancers expressing the Hu

antigen)[1,2].

Our dendritic cell/apoptotic tumor vaccine was immunogenic.

Sixty-seven percent of patients developed DTH responses to

LNCaP antigens. Furthermore, these DTH responses were

positively correlated with post-vaccine bulk T cell proliferation

responses. This high level of immunogenicity was similar to that

reported in other studies of peptide-pulsed or tumor cell associated

DC vaccines. Importantly, these responses included CD8+ T cell

responses to prostate tumor cells (Figure 4b). This is significant, as

a critical determinant of successful tumor vaccines is likely to be

induction of CD8+ T cell responses[33]. The ability to detect such

responses here is consistent with the observation that cross-

presentation of apoptotic cells are able to stimulate naı̈ve and

memory CD8+ T cell responses to tumor cells[3] or to virally

infected cells[8] ex vivo. Due to the nature of the disease, autologous

tumor cells were not available for testing T cell responses.

However, both the CD4 and CD8 proliferation responses were

detected to prostate tumor cell lines, despite the high background

responses seen in T cells post vaccination (Figure 4a). Such

background responses have been seen before in DC-based

vaccines and are of uncertain etiology[34], and may be reflected

in transient increases in ANA seen in some patients. It is likely that

patients had variable immune responses to tumor vaccination,

either resulting from intrinsic differences in immune repertoire, or

from actions of the tumor itself to modify patient immune

responses[35].

Significantly, we found that PSA slopes decreased and PSADT

increased after vaccination in our patient population as a whole

(p = 0.016). We hypothesized that if this correlation was related to

the immunogenicity of the vaccine, PSA changes should be present

in the subset of patients showing immunogenic response to vaccine

but not in those who do not. In fact, patients who had DTH

responses to LNCaP after vaccination had significant decreases in

PSA slope (p = 0.020), compared to patients who did not have

DTH responses (p = 0.631). Taken together, our data suggests that

the changes seen in PSA slope represent an immune response to

patient tumor cells in vivo.

Although variable immunologic and clinical responses have

been reported to vaccines using dead tumor cells as a source of

antigen, these studies have not focused on using pure, well-defined

populations of apoptotic tumor cells. We used UV-B irradiation to

induce apoptotic (not necrotic) death in .90% of the prostate cell

line used for the vaccine; nonetheless, our side-effect profile was

very low, similar to other tumor vaccines. Most other studies have

used gamma irradiation or freeze-thawing, generating variable

Table 4. Confidence intervals for T cell proliferation assay and
Foxp3+ cell analysis.

Group: p-value 95% CI

No Ag 0.160 (21703.275, 9649.413)

KLH 0.008* (4681.672, 27308.539)

LNCaP 0.017* (3759.725, 34618.214)

PC3 0.011* (5835.155, 38744.036)

3T3 0.070 (2862.319, 20294.713)

Foxp3+ cells 0.160 (20.978, 0.893)

95% confidence intervals and p-values for T cell proliferation response (3H
thymidine incorporation assay) and %Foxp3+ cells (FACS analysis) comparing
cells collected pre-vaccine and post-vaccine using the paired t-test.
doi:10.1371/journal.pone.0012367.t004

Figure 5. Foxp3 expression pre- and post-vaccination. a. FACS profile of Foxp3 expression in pre- and post-vaccinated peripheral blood gated
on CD4+ T cells. A representative patient (#13) is shown. b. Box plots of the percent Foxp3+ cells (gated on CD4+ T cells) pre and post-vaccination in
15 representative patients, including those across the whole range of proliferative responses and changes in PSA slope. The median is shown by the
+. Outliers are indicated by N. No difference in pre-vaccine vs. post-vaccine T cell expression of Foxp3 (p = 0.924) was observed.
doi:10.1371/journal.pone.0012367.g005
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mixtures of apoptotic and necrotic cells, which may underlie

differences in immunogenic potential[28].

Taken together, the results presented in this study provide initial

safety and immunogenicity data for a vaccine mimicking what we

believe is a critical trigger for naturally occurring effective tumor

immune responses seen in PND patients. These responses

correlate with a clinically relevant response to patient tumor, as

assessed by highly statistically significant effects on PSA slope and

doubling time. These observations suggest that this vaccination

approach warrants further exploration as a safe and potent means

of triggering tumor immune response in the general population of

cancer patients. Future vaccine modifications to be considered are

the addition of immune adjuvants during vaccine preparation ex

vivo or in conjunction with vaccine administration in vivo[9,36],

or the use of autologous tumor as a source of apoptotic antigen. In

addition, a safe means of vaccinating against prostate (or other)

cancers may serve in a synergistic manner with other immune-

stimulating agents, such as CTLA4-Ig, which are showing promise

in combined immunotherapies in prostate[37] and other can-

cers[38].

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1.

Patients and Study Design
Ethics Statement. The study was approved by The

Rockefeller University Institutional Review Board (RDA-0466)

and the FDA (IND 10710). Written consent was obtained from all

patients. No de novo cell lines were generated in this study.

Figure 6. Change in PSA slope pre- to post-vaccine. Graph of the average log2 (PSA) slope per study phase (solid line); for comparison, an
extrapolation of the pre-vaccine average log2 (PSA) slope is shown (dotted line). Based on the linear spline model, the average change in PSA slope of
23 patients from pre- to post-vaccine phases is 20.093/month (p = 0.016). One patient’s PSA values were not included in the analysis as his pre-
vaccine values were affected by other treatment near the start of study participation. Three other patients started other treatment either during or
after vaccination; PSA values obtained after this point were not included in the analysis.
doi:10.1371/journal.pone.0012367.g006

Table 5. Confidence intervals for PSA slopes.

PSA Slopes by Study Phases: p-value 95% CI

Pre- vs Post 0.016 (20.1694, 20.0166)

Pre- vs Vaccine 0.681 (20.1044, 0.0682)

Vaccine vs Post 0.098 (20.1613, 0.0134)

95% confidence intervals and p-values for PSA slopes comparing pre- vs
vaccine, vaccine vs post-vaccine, and pre- vs post-vaccine phases from the
linear mixed model.
doi:10.1371/journal.pone.0012367.t005

Table 6. Confidence intervals for PSA slopes upon
stratification.

Stratified by: p-value 95% CI

Whole group 0.016 (20.1694, 20.0166)

Response by DTH
to LNCaP lysate

Non-
Responders

0.631 (20.1682, 0.1022)

Responders 0.020 (20.1932, 20.0168)

PSA at start of study ,1 ng/ml 0.279 (0.2191, 0.0631)

$1 ng/ml 0.031 (20.1872, 20.0108)

95% confidence intervals and p-values for PSA slopes comparing pre- vs
vaccine, upon stratification by DTH response or no response to LNCaP lysate or
upon stratification by PSA ,1 ng/ml or 1 ng/ml at start of study.
doi:10.1371/journal.pone.0012367.t006
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Study Design. The study was conducted at the Rockefeller

University in New York; twenty-four patients aged 53 to 81 were

enrolled between November 2003 and February 2006. All authors

vouch for the completeness and accuracy of the data and its

analysis and participated in writing the article.

Twenty-four patients were randomly assigned to one of two

arms for the purpose of assessing vaccine safety, our primary

endpoint (Figure 1). All patients were blinded. Twelve patients

assigned to Arm 1 received vaccine followed by 3 vaccine boosts at

2-week intervals, for a total of four injections over eight weeks, and

were unblinded after the last booster. Twelve patients assigned to

Arm 2 received placebo (vehicle (5% DMSO in saline)) for each of

four injections, were unblinded, crossed over to the vaccine phase,

and received vaccine followed by 3 boosts at 2-week intervals.

After the last booster, patients in both groups were followed for up

to 22 weeks. All time points in both arms up to and including the

day of the first vaccination with DC vaccine were considered pre-

vaccine phase. All time points from the first booster through the

first follow up visit after the final vaccination (week 9) was

considered vaccine phase. All remaining time points in the study

were considered to be post-vaccine phase. Safety data was

compared between the 2 arms of the study, while immune and

PSA data were assessed by comparisons made between pre- and

post-vaccine phases in all 24 patients.

Patient Selection and Vaccination. Patients were eligible to

participate if they provided informed consent, had biopsy proven

prostate cancer and progressive disease: PSA documented to be

rising on 3 occasions, either despite castrate testosterone levels

(below 50 ng/dl) or despite definitive local therapy (prostatectomy,

radiation, etc.). Exclusion criteria included prior biologic therapy

with dendritic cells, autoimmune disease, or significant major

organ disease.

DC vaccines were given together with DTH panels and patients

were closely observed for one hour. Patients returned to clinic at

48 hours, at which time they were examined clinically and their

DTH responses were read. Vaccines were administered at a cell

dose ranging from 22106106 DCs/vaccination, given subcuta-

neously in the inner aspect of the upper arm, approximately 6–

8 cm from the axillary lymph nodes. Patients received one priming

and three biweekly booster vaccinations. During the first two

injections, patients also received 22106106 DC/KLH.

Vaccine
Vaccine was manufactured in a BSL-2 facility maintained and

independently audited to meet Good Tissue Practice specifica-

tions. To prepare autologous DCs, peripheral blood mononuclear

cells (PBMCs) were obtained by leukapheresis, adhered to

endotoxin free tissue-culture dishes (Falcon), and differentiated in

vitro to immature DCs over six days in RPMI-1640 supplemented

with 1% autologous plasma, GM-CSF (180 ng/ml; Bayer

HealthCare Pharmaceuticals) and IL-4 (10 mg/ml; R&D Systems)

as described[29,39]. LNCaP prostate tumor cells were obtained

from the American Type Cell Culture and a master cell bank was

made and screened by BioReliance Corporation (Rockville, MD)

to rule out contamination or adventitious agents. LNCaP cells

from the master stock (frozen in Aim V media (Invitrogen) plus

BSE-free fetal bovine serum (20% FBS; HyClone) and 5% DMSO

(Edward Life Sciences)) were expanded in Aim V media/1% FBS,

and cells were treated with UV-B irradiation such that .90% of

cells underwent apoptotic death (Caspatag positive, as de-

scribed[29]). Immature DCs and apoptotic LNCaP were co-

cultured at a ratio of 1:1 for 36–48 hours in the presence of PGE2

(20 mM; Sigma) and TNF-a (150 ng/ml; R&D Systems) to

mature DCs as described[40]. DCs pulsed with KLH (2.5 mg/ml,

biosyn) provided a positive control for DC function. All patients

were also immunized with 22106106 DCs cross-presenting

apoptotic LNCaP producing the M1 antigen as a potential

positive control (DC/LNCaP-M1), but only four patients were

HLA A2.1+ and tetramer analysis did not show boosted M1

responses post vaccination in these patients (data not shown). The

quality and viability of the vaccine was monitored by flow

cytometry; to pass release criteria the HLA-DR (DC) cell fraction

had to be .70% CD83+, ,15% CD14+ and ,20% Propidium

Iodide (PI) + (Serologicals). All antibodies were purchased from

BD Pharmingen. Sterility was tested by gram stain, by culture for

bacterial and fungal contamination (BacT/ALERT, Biomereux),

and by DNA fluorochrome for mycoplasma (Bionique Testing

Laboratories, Inc.). The LAL method (Associates of Cape Cod)

was used to test for endotoxin. The final product was divided into

4 equal aliquots, each containing 22106106 DCs each. The first

aliquot was given as a ‘‘fresh’’ dose; all other aliquots were frozen

and thawed prior to administration.

Clinical and Immunomonitoring
Clinical Monitoring. Patients were monitored at each study

visit by history, physical examination, and by laboratory

evaluations including CBC, chemistries, and urinalysis, for any

adverse effects. The National Cancer Institute Common Toxicity

Criteria version 3 was used to grade toxicities. Patients were also

asked to maintain a diary of local injection site reactions and

systemic adverse events for one week following each vaccination.

To assess for clinical response, PSA levels were measured in the

serum using MSA Bayer Immuno I or IEA Tosoh Nexia assays at

each study visit. The PSA slope was calculated for each phase of

the study (pre-vaccine, vaccine, and post-vaccine phases) using a

linear mixed model with two knots representing the change in

slope in each phase of the study. In addition, for each phase of

study for each patient, a PSA doubling time (PSADT) was

calculated using the formula: 1 divided by the slope log2 PSA

derived from this linear spline model.

Immunomonitoring. A DTH panel was placed intra-

dermally at weeks 1 (vaccine), 3 (Boost #1), 5 (Boost #2), 7

(Boost #3), 9, 17 and 29 to assess for T cell responses. The panel

included lysate of 105 LNCaP cells (in 0.1 ml normal saline),

0.05 mg KLH, candida or tetanus toxoid (whichever the patient

had responses to at baseline, as positive control), and saline (as

negative control). Responses were considered positive if erythema

was equal to or greater than 5 mm at 48 hours post implantation.

We evaluated immunogenicity outcomes against apoptotic

LNCaP and PC3 (another prostate cancer tumor cell line) by 3H

thymidine or CFSE proliferation assays as described[29] with the

following modifications. In the 3H thymidine assay, autologous

monocytes (CD14+ cells) were used as APCs. 3T3 cells, an

irrelevant cell line, were used as the negative control antigen and

influenza infected (strain A/P/R8) 3T3 cells were used as a

positive control for both pre-vaccine and post-vaccine T cell

responses. 3T3 cells were obtained from the American Type Cell

Culture. In the CFSE assay, DCs cross-presenting prostate tumor

antigens or 293 cells (irrelevant cell line used as negative control

antigen) were used as APCs and cultured with T cells stained with

CFSE (Vibrant CFDA SE Cell Tracer Kit, Invitrogen). On day 5,

T cells were stained with anti-CD8 conjugated antibody (Becton

Dickinson) and analyzed using FlowJo software. All cell lines were

UV-B irradiated to induce apoptotic death three hours prior to co-

culture with APCs[29].

To assess for correlations between patients who had a DTH

response to LNCaP lysate and those who had T cell proliferation

responses to apoptotic LNCaP in vitro, patients were ranked by a
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DTH index and a T cell (3H thymidine) proliferation index. The

DTH index was calculated as the number of positive DTH

responses to LNCaP lysate divided by the total number of DTH

time points for each patient. The T cell proliferation index was

calculated as the post-vaccine LNCaP response (CPM) minus 2

standard deviations, divided by post-vaccine 3T3 response (CPM)

plus 2 standard deviations.

FACS staining of regulatory T cells was done by surface staining

with anti-CD4-FITC (Becton Dickinson) followed by intracellular

staining with anti-Foxp3-APC (eBioscience, clone PCH101) per

manufacturers instructions. For analysis, PBMCs were gated on

CD4+ T cells and the percentage of Foxp3+ cells was determined

(FlowJo).

Statistical Analysis
The protocol called for 12 patients to be recruited to each of two

arms, which would have 90% power to detect an increase in

cumulative serious adverse events (SAEs) from 5% in the placebo

group to 50% in the vaccine group at the 10% level. All adverse

events were analyzed using Fisher’s exact test to compare placebo

and vaccine phase. Significance of DTH responses to LNCaP cell

lysate was determined by the exact binomial test with 95%

confidence intervals. To analyze pre- to post- T cell proliferation

data (per antigen) for study subjects as a group, a two-sampled

paired t-test was used with 95% confidence intervals. The

Spearman rank correlation test was used to determine if those

that had DTH responses to LNCaP lysate also had T cell

proliferation responses to apoptotic LNCaP in vitro. The paired t-

test was used to compare the percentage of pre- vs post-vaccine

Foxp3+ cells in PBMCs with 95% confidence intervals. In all of

the above tests, the differences or correlation were deemed

statistically significant if the p-value was less than 0.05.

To model the evolution of PSA (in log-scale) during the three

study phases (pre-vaccine, vaccine, and post-vaccine phases), a

mixed linear spline model was used. Two knots (one at the start of

the vaccine phase and the other at the start of the post-vaccine

phase) were used to directly quantify the differences in slopes

between each phase. To account for the heterogeneous treatment

effect and the repeated measures structure, random effects are

incorporated into the model. For the general model, random

effects for the intercept, slope and the first knot were considered.

To determine if there was any difference in PSA slopes between

those that did have an immunologic response (DTH responders to

LNCaP lysate) and those that did not (DTH non-responders to

LNCaP lysate), a second model, stratified by these response

indicators (with separate knots for the two groups), was fitted and

the likelihood ratio test was conducted. Similarly, a third model

was fitted, this time, stratified by PSA at study start of ,1 ng/ml

or $1 ng/ml. The models with stratification were then compared

to the general model. All models were fitted and hypotheses were

tested using the lme package from R (www.R-project.org). The

Wilcoxon matched-paired signed rank test was used to determine

statistical significance of the difference in PSADT between phases

(www.fon.hum.uva.nl/service/statistics/signed_rank_test.html). A

PSADT can be a positive number as a result of rising PSA levels or

a negative number as a result of declining PSA levels. For the

purpose of statistical analysis, negative PSADT (indicating

declining PSAs) were replaced with 9999 months to represent an

infinitely long doubling time so that they rank higher than any

value for which doubling time was a positive number. Differences

were deemed significant if the p-value was less than 0.05.
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