. Ind, QSAR ovine COX-1 0

J. Vane, Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs, Nature New Biology, vol.231, issue.25, pp.232-235, 1971.
DOI : 10.1038/newbio231232a0

M. Fine, Quantifying the impact of NSAID-associated adverse events, Am J Manag Care, vol.19, pp.267-272, 2013.

W. Xie, J. Chipman, D. Robertson, R. Erikson, and D. Simmons, Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing., Proceedings of the National Academy of Sciences, vol.88, issue.7, pp.2692-2696, 1991.
DOI : 10.1073/pnas.88.7.2692

C. Sostres, C. Gargallo, and A. Lanas, Aspirin, cyclooxygenase inhibition and colorectal cancer, World Journal of Gastrointestinal Pharmacology and Therapeutics, vol.5, issue.1, pp.40-49, 2014.
DOI : 10.4292/wjgpt.v5.i1.40

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944468

T. Warner, F. Giuliano, I. Vojnovic, A. Bukasa, J. Mitchell et al., Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.7563-7568, 1999.
DOI : 10.1073/pnas.96.13.7563

N. Nussmeier, A. Whelton, M. Brown, R. Langford, A. Hoeft et al., Complications of the COX-2 Inhibitors Parecoxib and Valdecoxib after Cardiac Surgery, New England Journal of Medicine, vol.352, issue.11, pp.1081-1091, 2005.
DOI : 10.1056/NEJMoa050330

L. Howes, Selective COX-2 inhibitors, NSAIDs and cardiovascular events is celecoxib the safest choice?, Ther Clin Risk Manag, vol.3, issue.5, pp.831-845, 2007.

Y. Yu, E. Ricciotti, R. Scalia, S. Tang, G. Grant et al., Vascular COX-2 Modulates Blood Pressure and Thrombosis in Mice, Science Translational Medicine, vol.4, issue.132, pp.132-54, 2012.
DOI : 10.1126/scitranslmed.3003787

L. Crofford, Use of NSAIDs in treating patients with arthritis, Arthritis Res Ther, vol.15, p.2, 2013.

D. Hermanson, N. Hartley, J. Gamble-george, N. Brown, B. Shonesy et al., Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation, Nature Neuroscience, vol.433, issue.9, pp.1291-1298, 2013.
DOI : 10.1038/npp.2009.101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788575

S. Zhang, X. Zhang, X. Ding, R. Yang, S. Huang et al., Cyclooxygenase inhibitors use is associated with reduced risk of esophageal adenocarcinoma in patients with Barrett???s esophagus: a meta-analysis, British Journal of Cancer, vol.59, issue.9, pp.2378-2388, 2014.
DOI : 10.1002/ijc.10427

R. Frolov and S. Singh, Celecoxib and ion channels: A story of unexpected discoveries, European Journal of Pharmacology, vol.730, pp.61-71, 2014.
DOI : 10.1016/j.ejphar.2014.02.032

P. Robak, P. Smolewski, and T. Robak, The role of non-steroidal anti-inflammatory drugs in the risk of development and treatment of hematologic malignancies, Leukemia & Lymphoma, vol.121, issue.2, pp.1452-1462, 2008.
DOI : 10.1016/j.leukres.2007.11.007

B. Moore and D. Simmons, COX-2 Inhibition, Apoptosis, and Chemoprevention by Nonsteroidal Anti-inflammatory Drugs., Current Medicinal Chemistry, vol.7, issue.11, pp.1131-1144, 2000.
DOI : 10.2174/0929867003374273

L. Chen, Y. He, H. Huang, H. Liao, and W. Wei, Selective COX-2 inhibitor celecoxib combined with EGFR-TKI ZD1839 on non-small cell lung cancer cell lines: in vitro toxicity and mechanism study, Medical Oncology, vol.89, issue.14, pp.161-171, 2008.
DOI : 10.1007/s12032-007-9015-1

M. Thun, S. Henley, and C. Patrono, Nonsteroidal Anti-inflammatory Drugs as Anticancer Agents: Mechanistic, Pharmacologic, and Clinical Issues, JNCI Journal of the National Cancer Institute, vol.94, issue.4, pp.252-266, 2002.
DOI : 10.1093/jnci/94.4.252

J. Soh, J. Kazi, H. Li, W. Thompson, and I. Weinstein, Celecoxib-induced growth inhibition in SW480 colon cancer cells is associated with activation of protein kinase G, Molecular Carcinogenesis, vol.549, issue.7, pp.519-525, 2008.
DOI : 10.1002/mc.20409

J. Jouzeau, B. Terlain, A. Abid, E. Nédélec, and P. Netter, Cyclo-Oxygenase Isoenzymes, Drugs, vol.53, issue.4, pp.563-582, 1997.
DOI : 10.2165/00003495-199753040-00003

URL : https://hal.archives-ouvertes.fr/hal-00466567

R. Jones, G. Rubin, F. Berenbaum, and J. Scheiman, Gastrointestinal and Cardiovascular Risks of Nonsteroidal Anti-inflammatory Drugs, The American Journal of Medicine, vol.121, issue.6, pp.464-474, 2008.
DOI : 10.1016/j.amjmed.2008.01.045

R. Curiel and J. Katz, Mitigating the Cardiovascular and Renal Effects of NSAIDs: Table 1, Pain Medicine, vol.14, issue.suppl 1, pp.23-28, 2013.
DOI : 10.1111/pme.12275

A. Blobaum and L. Marnett, Structural and Functional Basis of Cyclooxygenase Inhibition, Journal of Medicinal Chemistry, vol.50, issue.7, pp.1425-1441, 2007.
DOI : 10.1021/jm0613166

G. Dannhardt and S. Laufer, Structural Approaches to Explain the Selectivity of COX-2 Inhibitors: Is There a Common Pharmacophore?, Current Medicinal Chemistry, vol.7, issue.11, pp.1101-1112, 2000.
DOI : 10.2174/0929867003374237

X. De-leval, J. Delarge, F. Somers, P. De-tullio, Y. Henrotin et al., Recent Advances in Inducible Cyclooxygenase (COX-2) Inhibition., Current Medicinal Chemistry, vol.7, issue.10, pp.1041-1062, 2000.
DOI : 10.2174/0929867003374417

R. Reddy, R. Mutyala, P. Aparoy, P. Reddanna, and M. Reddy, Computer Aided Drug Design Approaches to Develop Cyclooxygenase Based Novel Anti-Inflammatory and Anti-Cancer Drugs, Current Pharmaceutical Design, vol.13, issue.34, pp.3505-3517, 2007.
DOI : 10.2174/138161207782794275

H. Kim, C. Chae, K. Yi, K. Park, and Y. Se, Computational studies of COX-2 inhibitors: 3D-QSAR and docking, Bioorganic & Medicinal Chemistry, vol.12, issue.7, pp.1629-1641, 2004.
DOI : 10.1016/j.bmc.2004.01.027

P. Dube, S. Bule, S. Mokale, M. Kumbhare, P. Dighe et al., Synthesis and biological evaluation of substituted 5-methyl-2-phenyl-1H-pyrazol-3(2H)-one derivatives as selective COX-2 inhibitors: Molecular docking study, Chem Biol Drug Des, 2014.

G. Gupta and A. Kumar, 3D-QSAR studies of some tetrasubstituted pyrazoles as COX-II inhibitors, Acta Pol Pharm, vol.69, issue.4, pp.763-772, 2012.

T. Narsinghani and S. Chaturvedi, QSAR analysis of meclofenamic acid analogues as selective COX-2 inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.16, issue.2, pp.461-468, 2006.
DOI : 10.1016/j.bmcl.2005.07.067

M. Lapinsh, P. Prusis, T. Lundstedt, and J. Wikberg, Proteochemometrics Modeling of the Interaction of Amine G-Protein Coupled Receptors with a Diverse Set of Ligands, Molecular Pharmacology, vol.61, issue.6, pp.1465-1475, 2002.
DOI : 10.1124/mol.61.6.1465

G. Van-westen, J. Wegner, A. Ijzerman, H. Van-vlijmen, and A. Bender, Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets, Med. Chem. Commun., vol.48, issue.1, pp.16-30, 2011.
DOI : 10.1039/C0MD00165A

C. Ciriano, I. Ain, Q. Subramanian, V. Lenselink, E. et al., Polypharmacology modelling using proteochemometrics: recent developments and future prospects, Med Chem Comm, pp.10-1039

G. Van-westen, O. Van-den-hoven, R. Van-der-pijl, T. Mulder-krieger, H. De-vries et al., Identifying Novel Adenosine Receptor Ligands by Simultaneous Proteochemometric Modeling of Rat and Human Bioactivity Data, Journal of Medicinal Chemistry, vol.55, issue.16
DOI : 10.1021/jm3003069

G. Van-westen, A. Hendriks, J. Wegner, A. Ijzerman, H. Van-vlijmen et al., Significantly Improved HIV Inhibitor Efficacy Prediction Employing Proteochemometric Models Generated From Antivirogram Data, PLoS Computational Biology, vol.38, issue.3, p.1002899, 2013.
DOI : 10.1371/journal.pcbi.1002899.s022

A. Gaulton, L. Bellis, A. Bento, J. Chambers, M. Davies et al., ChEMBL: a large-scale bioactivity database for drug discovery, Nucleic Acids Research, vol.40, issue.D1, pp.1100-1107, 2011.
DOI : 10.1093/nar/gkr777

T. Kalliokoski, C. Kramer, A. Vulpetti, and P. Gedeck, Comparability of Mixed IC50 Data ??? A Statistical Analysis, PLoS ONE, vol.51, issue.4, p.61007, 2013.
DOI : 10.1371/journal.pone.0061007.s006

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

G. Rimon, R. Sidhu, D. Lauver, J. Lee, N. Sharma et al., Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.28-33, 2010.
DOI : 10.1073/pnas.0909765106

F. Sievers, A. Wilm, D. Dineen, T. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, vol.7, issue.1, 2011.
DOI : 10.1093/nar/gkn174

D. Murrell, I. Cortes-ciriano, G. Van-westen, T. Malliavin, and A. Bender, Chemistry aware model builder (camb): an r package for predictive bioactivity modeling 2014

D. Rogers and M. Hahn, Extended-Connectivity Fingerprints, Journal of Chemical Information and Modeling, vol.50, issue.5, pp.742-754, 2010.
DOI : 10.1021/ci100050t

R. Glem, A. Bender, C. Arnby, L. Carlsson, S. Boyer et al., Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME, IDrugs, vol.9, issue.3, pp.199-204, 2006.

G. Landrum, RDKit Open-source cheminformatics, 2006.

C. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, Journal of Computational Chemistry, vol.24, issue.Suppl 2, pp.1466-1474, 2011.
DOI : 10.1002/jcc.21707

J. Oksanen, F. Blanchet, R. Kindt, P. Legendre, P. Minchin et al., vegan: Community Ecology Package, 2013.

M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström, and S. Wold, New Chemical Descriptors Relevant for the Design of Biologically Active Peptides. A Multivariate Characterization of 87 Amino Acids, Journal of Medicinal Chemistry, vol.41, issue.14, pp.2481-2491, 1998.
DOI : 10.1021/jm9700575

M. Kuhn, Building predictive models in R using the caret package, J Stat Soft, vol.28, issue.5, pp.1-26, 2008.

Z. Mayer and . Caretensemble, Framework for combining caret models into ensembles. [R package version 1, 2013.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 2013.
DOI : 10.1007/978-1-4614-6849-3

D. Hawkins, S. Basak, and D. Mills, Assessing Model Fit by Cross-Validation, Journal of Chemical Information and Computer Sciences, vol.43, issue.2
DOI : 10.1021/ci025626i

J. Brown, Y. Okuno, G. Marcou, A. Varnek, and D. Horvath, Computational chemogenomics: Is it more than inductive transfer?, Journal of Computer-Aided Molecular Design, vol.2, issue.1, pp.597-618, 2014.
DOI : 10.1007/s10822-014-9743-1

A. Golbraikh and A. Tropsha, Beware of q2!, Journal of Molecular Graphics and Modelling, vol.20, issue.4, pp.269-276, 2002.
DOI : 10.1016/S1093-3263(01)00123-1

A. Tropsha and A. Golbraikh, Predictive quantitative structure-activity relationships modeling, Handb Chemoinform Algorithms, vol.33, p.211, 2010.
DOI : 10.1201/9781420082999-c6

A. Tropsha, P. Gramatica, and V. Gombar, The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models, QSAR & Combinatorial Science, vol.38, issue.1, pp.69-77, 2003.
DOI : 10.1002/qsar.200390007

C. Kramer, T. Kalliokoski, P. Gedeck, and A. Vulpetti, Data, Journal of Medicinal Chemistry, vol.55, issue.11, pp.5165-5173, 2012.
DOI : 10.1021/jm300131x

URL : https://hal.archives-ouvertes.fr/in2p3-01071154

C. Kramer and R. Lewis, QSARs, Data and Error in the Modern Age of Drug Discovery, Current Topics in Medicinal Chemistry, vol.12, issue.17, pp.1896-1902
DOI : 10.2174/156802612804547380

R. Sheridan, Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest, Journal of Chemical Information and Modeling, vol.52, issue.3, pp.814-823, 2012.
DOI : 10.1021/ci300004n

J. Friedman, machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2000.
DOI : 10.1214/aos/1013203451

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

A. Ben-hur, C. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch, Support Vector Machines and Kernels for Computational Biology, PLoS Computational Biology, vol.14, issue.10, p.1000173, 2008.
DOI : 10.1371/journal.pcbi.1000173.t002

URL : http://doi.org/10.1371/journal.pcbi.1000173

R. Caruana, A. Niculescu-mizil, G. Crew, and A. Ksikes, Ensemble selection from libraries of models, Twenty-first international conference on Machine learning , ICML '04, 2004.
DOI : 10.1145/1015330.1015432

R. Sheridan, Using Random Forest To Model the Domain Applicability of Another Random Forest Model, Journal of Chemical Information and Modeling, vol.53, issue.11, pp.2837-2850, 2013.
DOI : 10.1021/ci400482e

D. Wood, L. Carlsson, M. Eklund, U. Norinder, and J. Stå-lring, QSAR with experimental and predictive distributions: an information theoretic approach for assessing model quality, Journal of Computer-Aided Molecular Design, vol.1, issue.2, pp.203-219, 2013.
DOI : 10.1007/s10822-013-9639-5

H. Dragos, M. Gilles, and V. Alexandre, Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models, Journal of Chemical Information and Modeling, vol.49, issue.7
DOI : 10.1021/ci9000579

G. Van-westen, J. Wegner, P. Geluykens, L. Kwanten, I. Vereycken et al., Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development, PLoS ONE, vol.6, issue.11, p.27518, 2011.
DOI : 10.1371/journal.pone.0027518.s016

C. Ciriano, I. Van-westen, G. Lenselink, E. Murrell, D. Bender et al., Proteochemometric modeling in a Bayesian framework, Journal of Cheminformatics, vol.6, issue.1, p.35, 2014.
DOI : 10.1186/1758-2946-6-35

URL : https://hal.archives-ouvertes.fr/pasteur-01107505

L. Rosenbaum, G. Hinselmann, A. Jahn, and A. Zell, Interpreting linear support vector machine models with heat map molecule coloring, Journal of Cheminformatics, vol.3, issue.1, p.11, 2011.
DOI : 10.1021/jm800314b

B. Spowage, C. Bruce, and J. Hirst, Interpretable correlation descriptors for quantitativestructure-activity relationships, Journal of Cheminformatics, vol.1, issue.1, p.22, 2009.
DOI : 10.1186/1758-2946-1-22

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820500

G. Marcou, D. Horvath, V. Solov-'ev, A. Arrault, P. Vayer et al., Interpretability of SAR/QSAR Models of any Complexity by Atomic Contributions, Molecular Informatics, vol.4, issue.9, pp.639-642, 2012.
DOI : 10.1002/minf.201100136

P. Polishchuk, V. Kuzmin, A. Artemenko, and E. Muratov, Universal Approach for Structural Interpretation of QSAR/QSPR Models, Molecular Informatics, vol.51, issue.3, pp.843-853, 2013.
DOI : 10.1002/minf.201300029

F. Kruger and J. Overington, Global Analysis of Small Molecule Binding to Related Protein Targets, PLoS Computational Biology, vol.45, issue.1, pp.1-002333, 2012.
DOI : 10.1371/journal.pcbi.1002333.s017

B. Efron and R. Tibshirani, An introduction to the bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

L. Lin, A Concordance Correlation Coefficient to Evaluate Reproducibility, Biometrics, vol.45, issue.1, pp.255-268, 1989.
DOI : 10.2307/2532051

T. Steichen and N. Cox, A note on the concordance correlation coefficient, Stata J, vol.2, issue.27, pp.183-189, 2002.

R. Clark and P. Fox, Statistical variation in progressive scrambling, Journal of Computer-Aided Molecular Design, vol.7, issue.7-9, pp.7-9563, 2004.
DOI : 10.1007/s10822-004-4077-z

S. Brown, S. Muchmore, and P. Hajduk, Healthy skepticism: assessing realistic model performance, Drug Discovery Today, vol.14, issue.7-8, pp.7-8420, 2009.
DOI : 10.1016/j.drudis.2009.01.012

W. Wilkerson, W. Galbraith, K. Gans-brangs, M. Grubb, W. Hewes et al., Antiinflammatory 4,5-Diarylpyrroles: Synthesis and QSAR, Journal of Medicinal Chemistry, vol.37, issue.7, pp.988-998, 1994.
DOI : 10.1021/jm00033a017

W. Wilkerson, R. Copeland, M. Covington, and J. Trzaskos, Antiinflammatory 4,5-Diarylpyrroles. 2. Activity as a Function of Cyclooxygenase-2 Inhibition, Journal of Medicinal Chemistry, vol.38, issue.20, pp.3895-3901, 1995.
DOI : 10.1021/jm00020a002

I. Khanna, R. Weier, Y. Yu, P. Collins, J. Miyashiro et al., 1,2-Diarylpyrroles as Potent and Selective Inhibitors of Cyclooxygenase-2, Journal of Medicinal Chemistry, vol.40, issue.11, pp.1619-1633, 1997.
DOI : 10.1021/jm970036a

C. Lau, C. Brideau, C. Chan, S. Charleson, W. Cromlish et al., Synthesis and biological evaluation of 3-heteroaryloxy-4-phenyl-2(5H)-furanones as selective COX-2 inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.9, issue.22, pp.3187-3192, 1999.
DOI : 10.1016/S0960-894X(99)00560-0

G. Dannhardt, B. Fiebich, and J. Schweppenhauser, COX-1/COX-2 inhibitors based on the methanone moiety, European Journal of Medicinal Chemistry, vol.37, issue.2, pp.147-161, 2002.
DOI : 10.1016/S0223-5234(01)01330-7

M. Scholz, A. Blobaum, L. Marnett, and E. Hey-hawkins, ortho-Carbaborane derivatives of indomethacin as cyclooxygenase (COX)-2 selective inhibitors, Bioorganic & Medicinal Chemistry, vol.20, issue.15, pp.4830-4837, 2012.
DOI : 10.1016/j.bmc.2012.05.063

S. Hayashi, N. Ueno, A. Murase, Y. Nakagawa, and J. Takada, Novel acid-type cyclooxygenase-2 inhibitors: Design, synthesis, and structure???activity relationship for anti-inflammatory drug, European Journal of Medicinal Chemistry, vol.50, pp.179-195, 2012.
DOI : 10.1016/j.ejmech.2012.01.053

D. Marbach, J. Costello, R. Kuffner, N. Vega, R. Prill et al., Wisdom of crowds for robust gene network inference, Nature Methods, vol.11, issue.8, pp.796-804, 2012.
DOI : 10.1093/nar/gkm815

J. Costello, L. Heiser, E. Georgii, M. Gönen, M. Menden et al., A community effort to assess and improve drug sensitivity prediction algorithms, Nature Biotechnology, vol.33, issue.12, 2014.
DOI : 10.1093/jnci/83.11.757

URL : https://hal.archives-ouvertes.fr/hal-01101874

J. Shaffer, Multiple Hypothesis Testing, Annual Review of Psychology, vol.46, issue.1, pp.561-584, 1995.
DOI : 10.1146/annurev.ps.46.020195.003021

C. Kramer, J. Fuchs, S. Whitebread, P. Gedeck, and K. Liedl, Matched Molecular Pair Analysis: Significance and the Impact of Experimental Uncertainty, Journal of Medicinal Chemistry, vol.57, issue.9, pp.3786-3802, 2014.
DOI : 10.1021/jm500317a

J. Klekota and F. Roth, Chemical substructures that enrich for biological activity, Bioinformatics, vol.24, issue.21, pp.2518-2525, 2008.
DOI : 10.1093/bioinformatics/btn479