Y. Abdelrahman and R. Belland, The chlamydial developmental cycle: Figure 1, FEMS Microbiology Reviews, vol.29, issue.5, pp.949-959, 2005.
DOI : 10.1016/j.femsre.2005.03.002

A. Kwaik and Y. , Nutrition-based evolution of intracellular pathogens, Environmental Microbiology Reports, vol.7, issue.2, 2015.

K. Akopyan, T. Edgren, H. Wang-edgren, R. Rosqvist, A. Fahlgren et al., Translocation of surface-localized effectors in type III secretion, Proceedings of the National Academy of Sciences, vol.108, issue.4, pp.1639-1644, 2011.
DOI : 10.1073/pnas.1013888108

M. Albrecht, C. Sharma, M. Dittrich, T. Mü-ller, R. Reinhardt et al., The transcriptional landscape of Chlamydia pneumoniae, Genome Biology, vol.12, issue.10, 2011.
DOI : 10.1186/1471-2105-11-94

A. Allaoui, P. Sansonetti, and C. Parsot, MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins, Molecular Microbiology, vol.17, issue.1, pp.59-68, 1993.
DOI : 10.1016/0378-1119(85)90120-9

S. Ball, A. Subtil, D. Bhattacharya, A. Moustafa, A. Weber et al., Metabolic Effectors Secreted by Bacterial Pathogens: Essential Facilitators of Plastid Endosymbiosis?, The Plant Cell, vol.25, issue.1, pp.7-21, 2013.
DOI : 10.1105/tpc.112.101329

URL : https://hal.archives-ouvertes.fr/hal-00784600

R. Belland, G. Zhong, D. Crane, D. Hogan, D. Sturdevant et al., Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8478-8483, 2003.
DOI : 10.1073/pnas.1331135100

H. Betts, K. Wolf, and K. Fields, Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal, Current Opinion in Microbiology, vol.12, issue.1, pp.81-87, 2009.
DOI : 10.1016/j.mib.2008.11.009

G. Boncompain, C. Mü-ller, V. Meas-yedid, P. Schmitt-kopplin, P. Lazarow et al., The Intracellular Bacteria Chlamydia Hijack Peroxisomes and Utilize Their Enzymatic Capacity to Produce Bacteria-Specific Phospholipids, PLoS ONE, vol.36, issue.1, 2014.
DOI : 10.1371/journal.pone.0086196.s002

URL : https://hal.archives-ouvertes.fr/pasteur-01084394

R. Brunham and J. Rey-ladino, Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine, Nature Reviews Immunology, vol.5, issue.2, pp.149-161, 1551.
DOI : 10.1038/nri1551

J. Carlson, W. Whitmire, D. Crane, L. Wicke, K. Virtaneva et al., The Chlamydia trachomatis Plasmid Is a Transcriptional Regulator of Chromosomal Genes and a Virulence Factor, Infection and Immunity, vol.76, issue.6, pp.2273-228300102, 2008.
DOI : 10.1128/IAI.00102-08

M. Chiappino, C. Dawson, J. Schachter, and B. Nichols, Cytochemical localization of glycogen in Chlamydia trachomatis inclusions., Journal of Bacteriology, vol.177, issue.18, pp.5358-5363, 1995.
DOI : 10.1128/jb.177.18.5358-5363.1995

C. Colleoni, D. Dauvill-e, G. Mouille, M. Morell, M. Samuel et al., ??-1,4 Glucanotransferase Supports a Direct Function in Amylopectin Biosynthesis, Plant Physiology, vol.120, issue.4, pp.1005-1014, 1999.
DOI : 10.1104/pp.120.4.1005

E. Creasey and R. Isberg, Maintenance of vacuole integrity by bacterial pathogens, Current Opinion in Microbiology, vol.17, pp.46-52, 2014.
DOI : 10.1016/j.mib.2013.11.005

W. Eisenreich, T. Dandekar, J. Heesemann, and W. Goebel, Carbon metabolism of intracellular bacterial pathogens and possible links to virulence, Nature Reviews Microbiology, vol.19, issue.6, pp.401-412, 2010.
DOI : 10.1038/nrmicro2351

J. Fredlund and J. Enninga, Cytoplasmic access by intracellular bacterial pathogens, Trends in Microbiology, vol.22, issue.3, pp.128-137, 2014.
DOI : 10.1016/j.tim.2014.01.003

URL : https://hal.archives-ouvertes.fr/pasteur-01113445

J. Galá-n, M. Lara-tejero, T. Marlovits, and S. Wagner, Bacterial Type III Secretion Systems: Specialized Nanomachines for Protein Delivery into Target Cells, Annual Review of Microbiology, vol.68, issue.1, pp.415-438, 2014.
DOI : 10.1146/annurev-micro-092412-155725

. Gordonfb and A. Quan, Occurrence of Glycogen in Inclusions of the Psittacosis-Lymphogranuloma Venereum-Trachoma Agents, Journal of Infectious Diseases, vol.115, issue.2, pp.186-196, 1965.
DOI : 10.1093/infdis/115.2.186

A. Harper, C. Pogson, M. Jones, and J. Pearce, Chlamydial Development Is Adversely Affected by Minor Changes in Amino Acid Supply, Blood Plasma Amino Acid Levels, and Glucose Deprivation, Infection and Immunity, vol.68, issue.3, pp.1457-1464, 2000.
DOI : 10.1128/IAI.68.3.1457-1464.2000

B. Henrissat, E. Deleury, and P. Coutinho, Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria?, Trends in Genetics, vol.18, issue.9, pp.437-440, 2002.
DOI : 10.1016/S0168-9525(02)02734-8

M. Horn, as Symbionts in Eukaryotes, Annual Review of Microbiology, vol.62, issue.1, pp.113-131, 2008.
DOI : 10.1146/annurev.micro.62.081307.162818

E. Iliffe-lee and G. Mcclarty, Regulation of carbon metabolism in Chlamydia trachomatis, Molecular Microbiology, vol.175, issue.1, 2000.
DOI : 10.1126/science.282.5389.754

N. Ishida, T. Kuba, K. Aoki, S. Miyatake, M. Kawakita et al., Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family, Genomics, vol.85, issue.1, pp.106-116, 2005.
DOI : 10.1016/j.ygeno.2004.09.010

M. Kokes and R. Valdivia, Differential Translocation of Host Cellular Materials into the Chlamydia trachomatis Inclusion Lumen during Chemical Fixation, PLOS ONE, vol.31, issue.Pt 1, 2015.
DOI : 10.1371/journal.pone.0139153.s008

A. Kuma, M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya et al., The role of autophagy during the early neonatal starvation period, Nature, vol.16, issue.7020, pp.1032-1036, 1038.
DOI : 10.1038/365087a0

Y. Kumar, J. Cocchiaro, and R. Valdivia, The Obligate Intracellular Pathogen Chlamydia trachomatis Targets Host Lipid Droplets, Current Biology, vol.16, issue.16, pp.1646-1651, 2006.
DOI : 10.1016/j.cub.2006.06.060

Y. Kumar and R. Valdivia, Leading a Sheltered Life: Intracellular Pathogens and Maintenance of Vacuolar Compartments, Cell Host & Microbe, vol.5, issue.6, pp.593-601, 2009.
DOI : 10.1016/j.chom.2009.05.014

C. Lu, L. Lei, B. Peng, L. Tang, H. Ding et al., Chlamydia trachomatis GlgA Is Secreted into Host Cell Cytoplasm, PLoS ONE, vol.7, issue.7, 2013.
DOI : 10.1371/journal.pone.0068764.g007

URL : http://doi.org/10.1371/journal.pone.0068764

D. Luck, GLYCOGEN SYNTHESIS FROM URIDINE DIPHOSPHATE GLUCOSE: The Distribution of the Enzyme in Liver Cell Fractions, The Journal of Cell Biology, vol.10, issue.2, pp.195-209, 1961.
DOI : 10.1083/jcb.10.2.195

B. Nguyen and R. Valdivia, Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches, Proceedings of the National Academy of Sciences, vol.109, issue.4, pp.1263-1268, 2012.
DOI : 10.1073/pnas.1117884109

A. Omsland, J. Sager, V. Nair, D. Sturdevant, and T. Hackstadt, Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium, Proceedings of the National Academy of Sciences, vol.109, issue.48, pp.19781-19785, 2012.
DOI : 10.1073/pnas.1212831109

Y. Qu, L. Frazer, O. Connell, C. Tarantal, A. Andrews et al., Comparable Genital Tract Infection, Pathology, and Immunity in Rhesus Macaques Inoculated with Wild-Type or Plasmid-Deficient Chlamydia trachomatis Serovar D, Infection and Immunity, vol.83, issue.10, pp.4056-4067, 1128.
DOI : 10.1128/IAI.00841-15

K. Rajaram, A. Giebel, E. Toh, S. Hu, J. Newman et al., Mutational Analysis of the Chlamydia muridarum Plasticity Zone, Infection and Immunity, vol.83, issue.7, pp.2870-2881, 2015.
DOI : 10.1128/IAI.00106-15

P. Roach, A. Depaoli-roach, T. Hurley, and V. Tagliabracci, Glycogen and its metabolism: some new developments and old themes, Biochemical Journal, vol.95, issue.3, pp.763-787, 2012.
DOI : 10.1371/journal.pone.0021294

M. Russell, T. Darville, K. Chandra-kuntal, B. Smith, C. Andrews et al., Infectivity Acts as In Vivo Selection for Maintenance of the Chlamydial Cryptic Plasmid, Infection and Immunity, vol.79, issue.1, pp.98-107, 2011.
DOI : 10.1128/IAI.01105-10

H. Saka, J. Thompson, Y. Chen, Y. Kumar, L. Dubois et al., Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms, Molecular Microbiology, vol.138, issue.2, pp.1185-1203, 2011.
DOI : 10.1111/j.1365-2958.2011.07877.x

G. Schaart, R. Hesselink, H. Keizer, G. Van-kranenburg, M. Drost et al., A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections, Histochemistry and Cell Biology, vol.122, issue.2, pp.161-169, 2004.
DOI : 10.1007/s00418-004-0690-0

C. Schwö-ppe, H. Winkler, and H. Neuhaus, Properties of the Glucose-6-Phosphate Transporter from Chlamydia pneumoniae (HPTcp) and the Glucose-6-Phosphate Sensor from Escherichia coli (UhpC), Journal of Bacteriology, vol.184, issue.8, pp.2108-2115, 2002.
DOI : 10.1128/JB.184.8.2108-2115.2002

M. Scidmore, Cultivation and laboratory maintenance of Chlamydia trachomatis, Current Protocols in Microbiology, 2005.

G. Seibold and B. Eikmanns, The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress, Microbiology, vol.153, issue.7, pp.5181-5181, 2006.
DOI : 10.1099/mic.0.2006/005181-0

D. Stapleton, C. Nelson, K. Parsawar, D. Mcclain, R. Gilbert-wilson et al., Analysis of hepatic glycogen-associated proteins, PROTEOMICS, vol.3, issue.12, pp.2320-2329, 2010.
DOI : 10.1002/pmic.200900628

R. Stephens, S. Kalman, C. Lammel, J. Fan, R. Marathe et al., Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia trachomatis, Science, vol.282, issue.5389, pp.754-755, 1998.
DOI : 10.1126/science.282.5389.754

A. Subtil, C. Parsot, and A. Dautry-varsat, Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery, Molecular Microbiology, vol.65, issue.3, pp.792-800, 2001.
DOI : 10.1016/S1286-4579(00)00335-X

A. Subtil, C. Delevoye, ´. Balañ-a, . Me, L. Tastevin et al., A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates, Molecular Microbiology, vol.11, issue.6, pp.1636-1647, 2005.
DOI : 10.1111/j.1365-2958.2005.04647.x

URL : https://hal.archives-ouvertes.fr/hal-00021366

T. Suda, S. Kamiyama, M. Suzuki, N. Kikuchi, K. Nakayama et al., Molecular Cloning and Characterization of a Human Multisubstrate Specific Nucleotide-sugar Transporter Homologous to Drosophila fringe connection, Journal of Biological Chemistry, vol.279, issue.25, pp.26469-26474, 2004.
DOI : 10.1074/jbc.M311353200

H. Taylor, M. Burton, D. Haddad, S. West, and H. Wright, Trachoma, The Lancet, vol.384, issue.9960, pp.2142-2152, 2014.
DOI : 10.1016/S0140-6736(13)62182-0

J. Thié-ry, Mise en e ´ vidence des polysaccharides sur coupes fines en microscopie e ´ lectronique, Journal of Microscopy, vol.6, pp.978-1018, 1967.

K. Tokuyasu, A TECHNIQUE FOR ULTRACRYOTOMY OF CELL SUSPENSIONS AND TISSUES, The Journal of Cell Biology, vol.57, issue.2, pp.551-565, 1973.
DOI : 10.1083/jcb.57.2.551

F. Vromman, M. Laverriè-re, S. Perrinet, A. Dufour, and A. Subtil, Quantitative Monitoring of the Chlamydia trachomatis Developmental Cycle Using GFP-Expressing Bacteria, Microscopy and Flow Cytometry, PLoS ONE, vol.9, issue.6, 2014.
DOI : 10.1371/journal.pone.0099197.s001

URL : https://hal.archives-ouvertes.fr/pasteur-01448137

Y. Wang, S. Kahane, L. Cutcliffe, R. Skilton, P. Lambden et al., Development of a Transformation System for Chlamydia trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector, PLoS Pathogens, vol.1, issue.9, 2011.
DOI : 10.1371/journal.ppat.1002258.s009

W. Wilson, P. Roach, M. Montero, E. Baroja-ferná-ndez, F. Muñ-oz et al., Regulation of glycogen metabolism in yeast and bacteria, FEMS Microbiology Reviews, vol.34, issue.6, pp.952-985, 2010.
DOI : 10.1111/j.1574-6976.2010.00220.x