Y. Abdelrahman and R. Belland, The chlamydial developmental cycle: Figure 1, FEMS Microbiology Reviews, vol.29, issue.5, pp.949-959, 2005.
DOI : 10.1016/j.femsre.2005.03.002

S. Abromaitis and R. Stephens, Attachment and Entry of Chlamydia Have Distinct Requirements for Host Protein Disulfide Isomerase, PLoS Pathogens, vol.88, issue.4, p.1000357, 2009.
DOI : 10.1371/journal.ppat.1000357.s003

H. Agaisse and I. Derre, Expression of the Effector Protein IncD in Chlamydia trachomatis Mediates Recruitment of the Lipid Transfer Protein CERT and the Endoplasmic Reticulum-Resident Protein VAPB to the Inclusion Membrane, Infection and Immunity, vol.82, issue.5, pp.2037-2047, 2014.
DOI : 10.1128/IAI.01530-14

M. Albrecht, C. Sharma, M. Dittrich, T. Muller, R. Reinhardt et al., The transcriptional landscape of Chlamydia pneumoniae, Genome Biology, vol.12, issue.10, p.98, 2011.
DOI : 10.1186/1471-2105-11-94

M. Al-zeer, H. Younes, D. Lauster, A. Lubad, M. Meyer et al., Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins, Autophagy, vol.9, pp.46-58, 2013.

M. Balañá, F. Niedergang, A. Subtil, A. Alcover, P. Chavrier et al., ARF6 GTPase controls bacterial invasion by actin remodelling, Journal of Cell Science, vol.118, issue.10, pp.2201-2210, 2005.
DOI : 10.1242/jcs.02351

C. Barry, S. Hayes, and T. Hackstadt, Nucleoid Condensation in Escherichia coli That Express a Chlamydial Histone Homolog, Science, vol.256, issue.5055, pp.377-379, 1992.
DOI : 10.1126/science.256.5055.377

B. Batteiger, Chlamydia infection and epidemiology Intracellular pathogens I; Chlamydiales, 2012.

P. Bavoil, A. Ohlin, and J. Schachter, Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis, Infect Immun, vol.44, pp.479-485, 1984.

E. Becker and J. Hegemann, All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function, MicrobiologyOpen, vol.69, issue.Suppl. 3, pp.544-556, 2014.
DOI : 10.1002/mbo3.186

S. Bedson and J. Gostling, A study of the mode of multiplication of psittacosis virus, Br J Exp Pathol, vol.35, pp.299-308, 1954.

R. Belland, M. Scidmore, D. Crane, D. Hogan, W. Whitmire et al., Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes, Proceedings of the National Academy of Sciences, vol.98, issue.24, pp.13984-13989, 2001.
DOI : 10.1073/pnas.241377698

R. Belland, G. Zhong, D. Crane, D. Hogan, D. Sturdevant et al., Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8478-8483, 2003.
DOI : 10.1073/pnas.1331135100

H. Betts, L. Twiggs, M. Sal, P. Wyrick, and K. Fields, Bioinformatic and Biochemical Evidence for the Identification of the Type III Secretion System Needle Protein of Chlamydia trachomatis, Journal of Bacteriology, vol.190, issue.5, pp.1680-1690, 2008.
DOI : 10.1128/JB.01671-07

H. Betts-hampikian and K. Fields, Disulfide Bonding within Components of the Chlamydia Type III Secretion Apparatus Correlates with Development, Journal of Bacteriology, vol.193, issue.24, pp.6950-6959, 2011.
DOI : 10.1128/JB.05163-11

S. Birkelund, M. Morgan-fisher, E. Timmerman, K. Gevaert, A. Shaw et al., L2 outer membrane complex, COMC, FEMS Immunology & Medical Microbiology, vol.55, issue.2, pp.187-195, 2009.
DOI : 10.1111/j.1574-695X.2009.00522.x

M. Bothe, P. Dutow, A. Pich, H. Genth, and A. Klos, DXD Motif-Dependent and -Independent Effects of the Chlamydia trachomatis Cytotoxin CT166, Toxins, vol.7, issue.2, pp.621-637, 2015.
DOI : 10.3390/toxins7020621

T. Brickman, C. Barry, and T. Hackstadt, Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity., Journal of Bacteriology, vol.175, issue.14, pp.4274-4281, 1993.
DOI : 10.1128/jb.175.14.4274-4281.1993

A. Brinkworth, D. Malcolm, A. Pedrosa, K. Roguska, S. Shahbazian et al., Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP, Molecular Microbiology, vol.31, issue.1, pp.131-144, 2011.
DOI : 10.1111/j.1365-2958.2011.07802.x

R. Carabeo, S. Grieshaber, E. Fischer, and T. Hackstadt, Chlamydia trachomatis Induces Remodeling of the Actin Cytoskeleton during Attachment and Entry into HeLa Cells, Infection and Immunity, vol.70, issue.7, pp.3793-3803, 2002.
DOI : 10.1128/IAI.70.7.3793-3803.2002

R. Carabeo, S. Grieshaber, A. Hasenkrug, C. Dooley, and T. Hackstadt, Requirement for the Rac GTPase in Chlamydia trachomatis Invasion of Non-phagocytic Cells, Traffic, vol.160, issue.6, pp.418-425, 2004.
DOI : 10.1111/j.1398-9219.2004.00184.x

R. Carabeo, C. Dooley, S. Grieshaber, and T. Hackstadt, Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion, Cellular Microbiology, vol.92, issue.9, pp.2278-2288, 2007.
DOI : 10.1111/j.1462-5822.2007.00958.x

J. Chen and R. Stephens, Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells, Molecular Microbiology, vol.2, issue.3, pp.501-507, 1994.
DOI : 10.1016/0092-8674(92)90296-O

Y. Chen, R. Bastidas, H. Saka, V. Carpenter, K. Richards et al., The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling, PLoS Pathogens, vol.8, issue.2, p.1003954, 2014.
DOI : 10.1371/journal.ppat.1003954.s012

E. Cheng and M. Tan, Differential Effects of DNA Supercoiling on Chlamydia Early Promoters Correlate with Expression Patterns in Midcycle, Journal of Bacteriology, vol.194, issue.12, pp.3109-3115, 2012.
DOI : 10.1128/JB.00242-12

G. Christiansen, L. Pedersen, J. Koehler, A. Lundemose, and S. Birkelund, Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA., Journal of Bacteriology, vol.175, issue.6, pp.1785-1795, 1993.
DOI : 10.1128/jb.175.6.1785-1795.1993

D. Clifton, K. Fields, N. Grieshaber, C. Dooley, E. Fischer et al., From The Cover: A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin, Proceedings of the National Academy of Sciences, vol.101, issue.27, pp.10166-10171, 2004.
DOI : 10.1073/pnas.0402829101

A. Collingro, P. Tischler, T. Weinmaier, T. Penz, E. Heinz et al., Unity in Variety--The Pan-Genome of the Chlamydiae, Molecular Biology and Evolution, vol.28, issue.12, pp.3253-3270, 2011.
DOI : 10.1093/molbev/msr161

C. Conant and R. Stephens, Chlamydia attachment to mammalian cells requires protein disulfide isomerase, Cellular Microbiology, vol.55, issue.12, pp.222-232, 2007.
DOI : 10.1016/0092-8674(92)90296-O

M. Da-cunha, C. Milho, F. Almeida, S. Pais, V. Borges et al., Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system, BMC Microbiology, vol.14, issue.1, p.40, 2014.
DOI : 10.1186/1471-2180-14-40

C. Davis, J. Raulston, and P. Wyrick, Protein Disulfide Isomerase, a Component of the Estrogen Receptor Complex, Is Associated with Chlamydia trachomatis Serovar E Attached to Human Endometrial Epithelial Cells, Infection and Immunity, vol.70, issue.7, pp.3413-3418, 2002.
DOI : 10.1128/IAI.70.7.3413-3418.2002

P. Dehoux, R. Flores, C. Dauga, G. Zhong, and A. Subtil, Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins, BMC Genomics, vol.192, issue.19, p.109, 2011.
DOI : 10.1186/1471-2164-12-109

URL : https://hal.archives-ouvertes.fr/pasteur-00567996

I. Derre, R. Swiss, and H. Agaisse, The Lipid Transfer Protein CERT Interacts with the Chlamydia Inclusion Protein IncD and Participates to ER-Chlamydia Inclusion Membrane Contact Sites, PLoS Pathogens, vol.57, issue.6, p.1002092, 2011.
DOI : 10.1371/journal.ppat.1002092.s016

C. Elwell, A. Ceesay, J. Kim, D. Kalman, and J. Engel, RNA Interference Screen Identifies Abl Kinase and PDGFR Signaling in Chlamydia trachomatis Entry, PLoS Pathogens, vol.160, issue.3, p.1000021, 2008.
DOI : 10.1371/journal.ppat.1000021.s007

S. Fadel and A. Eley, Is lipopolysaccharide a factor in infectivity of Chlamydia trachomatis?, Journal of Medical Microbiology, vol.57, issue.3, pp.261-266, 2008.
DOI : 10.1099/jmm.0.47237-0

J. Ferrell and K. Fields, A working model for the type III secretion mechanism in Chlamydia, Microbes and Infection, vol.18, issue.2, pp.84-92, 2016.
DOI : 10.1016/j.micinf.2015.10.006

A. Furtado, M. Essid, S. Perrinet, M. Balañá, A. Dautry-varsat et al., OTU is an early type III secretion effector targeting ubiquitin and NDP52, Cellular Microbiology, vol.11, issue.12, pp.2064-2079, 2013.
DOI : 10.1111/cmi.12171

J. Galan, M. Lara-tejero, T. Marlovits, and S. Wagner, Bacterial Type III Secretion Systems: Specialized Nanomachines for Protein Delivery into Target Cells, Annual Review of Microbiology, vol.68, issue.1, pp.415-438, 2014.
DOI : 10.1146/annurev-micro-092412-155725

L. Gehre, O. Gorgette, M. Prévost, M. Ducatez, A. Giebel et al., Author response, eLife, vol.34, 2016.
DOI : 10.7554/eLife.12552.027

W. Gregory, M. Gardner, G. Byrne, and J. Moulder, Arrays of hemispheric surface projections on Chlamydia psittaci and Chlamydia trachomatis observed by scanning electron microscopy, J Bacteriol, vol.138, pp.241-244, 1979.

N. Grieshaber, E. Fischer, D. Mead, C. Dooley, and T. Hackstadt, From The Cover: Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis, Proceedings of the National Academy of Sciences, vol.101, issue.19, pp.7451-7456, 2004.
DOI : 10.1073/pnas.0400754101

N. Grieshaber, J. Sager, C. Dooley, S. Hayes, and T. Hackstadt, Regulation of the Chlamydia trachomatis Histone H1-Like Protein Hc2 Is IspE Dependent and IhtA Independent, Journal of Bacteriology, vol.188, issue.14, pp.5289-5292, 2006.
DOI : 10.1128/JB.00526-06

N. Guseva, S. Dessus-babus, C. Moore, J. Whittimore, and P. Wyrick, Differences in Chlamydia trachomatis Serovar E Growth Rate in Polarized Endometrial and Endocervical Epithelial Cells Grown in Three-Dimensional Culture, Infection and Immunity, vol.75, issue.2, pp.553-564, 2007.
DOI : 10.1128/IAI.01517-06

T. Hackstadt, W. Todd, and H. Caldwell, Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae?, J Bacteriol, vol.161, pp.25-31, 1985.

T. Hackstadt, W. Baehr, and Y. Ying, Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1., Proceedings of the National Academy of Sciences, vol.88, issue.9, pp.3937-3941, 1991.
DOI : 10.1073/pnas.88.9.3937

T. Hackstadt, E. Fischer, M. Scidmore, D. Rockey, and R. Heinzen, Origins and functions of the chlamydial inclusion, Trends in Microbiology, vol.5, issue.7, pp.288-293, 1997.
DOI : 10.1016/S0966-842X(97)01061-5

S. Haider, M. Wagner, M. Schmid, B. Sixt, J. Christian et al., Raman microspectroscopy reveals long-term extracellular activity of chlamydiae, Molecular Microbiology, vol.68, issue.3, pp.687-700, 2010.
DOI : 10.1111/j.1365-2958.2010.07241.x

B. Hanson, A. Slepenkin, E. Peterson, and M. Tan, ABSTRACT, Journal of Bacteriology, vol.197, issue.20, pp.3238-3244, 2015.
DOI : 10.1128/JB.00379-15

T. Hatch, Developmental biology Chlamydia: intracellular biology, pathogenesis, and immunity, pp.29-67, 1999.

J. Hegemann and K. Moelleken, Chlamydial adhesion and adhesins Intracellular pathogens I: Chlamydiales, pp.97-125, 2012.

S. Hower, K. Wolf, and K. Fields, T3S substrate capable of functioning during invasion or early cycle development, Molecular Microbiology, vol.176, issue.6, pp.1423-1437, 2009.
DOI : 10.1111/j.1365-2958.2009.06732.x

Z. Huang, M. Chen, K. Li, X. Dong, J. Han et al., Cryo-electron tomography of Chlamydia trachomatis gives a clue to the mechanism of outer membrane changes, Journal of Electron Microscopy, vol.59, issue.3, pp.237-241, 2010.
DOI : 10.1093/jmicro/dfp057

T. Jewett, E. Fischer, D. Mead, and T. Hackstadt, Chlamydial TARP is a bacterial nucleator of actin, Proceedings of the National Academy of Sciences, vol.103, issue.42, pp.15599-15604, 2006.
DOI : 10.1073/pnas.0603044103

T. Jewett, C. Dooley, D. Mead, and T. Hackstadt, Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases, Biochemical and Biophysical Research Communications, vol.371, issue.2, pp.339-344, 2008.
DOI : 10.1016/j.bbrc.2008.04.089

T. Jewett, N. Miller, C. Dooley, and T. Hackstadt, The Conserved Tarp Actin Binding Domain Is Important for Chlamydial Invasion, PLoS Pathogens, vol.31, issue.7, p.1000997, 2010.
DOI : 10.1371/journal.ppat.1000997.g005

S. Jiwani, S. Alvarado, R. Ohr, A. Romero, B. Nguyen et al., Chlamydia trachomatis Tarp Harbors Distinct G and F Actin Binding Domains That Bundle Actin Filaments, Journal of Bacteriology, vol.195, issue.4, pp.708-716, 2013.
DOI : 10.1128/JB.01768-12

K. Karunakaran, P. Subbarayal, N. Vollmuth, and T. Rudel, -infected cells shed Gp96 to prevent chlamydial re-infection, Molecular Microbiology, vol.69, issue.Suppl. 2, pp.694-711, 2015.
DOI : 10.1111/mmi.13151

URL : https://hal.archives-ouvertes.fr/hal-00130401

J. Kim, S. Jiang, C. Elwell, and J. Engel, Chlamydia trachomatis Co-opts the FGF2 Signaling Pathway to Enhance Infection, PLoS Pathogens, vol.270, issue.10, p.1002285, 2011.
DOI : 10.1371/journal.ppat.1002285.s006

B. Lane, C. Mutchler, A. Khodor, S. Grieshaber, S. Carabeo et al., Chlamydial Entry Involves TARP Binding of Guanine Nucleotide Exchange Factors, PLoS Pathogens, vol.255, issue.17, p.1000014, 2008.
DOI : 10.1371/journal.ppat.1000014.s004

G. Liechti, E. Kuru, E. Hall, A. Kalinda, Y. Brun et al., A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis, Nature, vol.66, issue.7489, pp.507-510, 2014.
DOI : 10.1038/ncomms2503

X. Liu, M. Afrane, D. Clemmer, G. Zhong, and D. Nelson, Identification of Chlamydia trachomatis Outer Membrane Complex Proteins by Differential Proteomics, Journal of Bacteriology, vol.192, issue.11, pp.2852-2860, 2010.
DOI : 10.1128/JB.01628-09

E. Lutter, C. Bonner, M. Holland, R. Suchland, W. Stamm et al., Phylogenetic Analysis of Chlamydia trachomatis Tarp and Correlation with Clinical Phenotype, Infection and Immunity, vol.78, issue.9, pp.3678-3688, 2010.
DOI : 10.1128/IAI.00515-10

A. Matsumoto, Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci, J Bacteriol, vol.145, pp.605-612, 1981.

A. Mehlitz, S. Banhart, S. Hess, M. Selbach, and T. Meyer, Tarp phosphorylation, FEMS Microbiology Letters, vol.289, issue.2, pp.233-240, 2008.
DOI : 10.1111/j.1574-6968.2008.01390.x

S. Misaghi, Z. Balsara, A. Catic, E. Spooner, H. Ploegh et al., -derived deubiquitinating enzymes in mammalian cells during infection, Molecular Microbiology, vol.202, issue.1, pp.142-150, 2006.
DOI : 10.1111/j.1365-2958.2006.05199.x

URL : https://hal.archives-ouvertes.fr/pasteur-00825963

J. Mital, E. Lutter, A. Barger, and C. Dooley, Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1), Biochemical and Biophysical Research Communications, vol.462, issue.2, pp.165-170
DOI : 10.1016/j.bbrc.2015.04.116

K. Moelleken and J. Hegemann, The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding, Molecular Microbiology, vol.69, issue.Suppl. 3, pp.403-419, 2008.
DOI : 10.1111/j.1365-2958.2007.06050.x

K. Molleken, E. Schmidt, and J. Hegemann, Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs, Molecular Microbiology, vol.274, issue.3, pp.1004-1017, 2010.
DOI : 10.1111/j.1365-2958.2010.07386.x

K. Molleken, E. Becker, and J. Hegemann, The Chlamydia pneumoniae Invasin Protein Pmp21 Recruits the EGF Receptor for Host Cell Entry, PLoS Pathogens, vol.89, issue.4, p.1003325, 2013.
DOI : 10.1371/journal.ppat.1003325.s007

J. Moulder, The Relation of the Psittacosis Group (Chlamydiae) to Bacteria and Viruses, Annual Review of Microbiology, vol.20, issue.1, pp.107-130, 1966.
DOI : 10.1146/annurev.mi.20.100166.000543

K. Mueller and K. Fields, Application of ??-Lactamase Reporter Fusions as an Indicator of Effector Protein Secretion during Infections with the Obligate Intracellular Pathogen Chlamydia trachomatis, PLOS ONE, vol.82, issue.8, p.135295, 2015.
DOI : 10.1371/journal.pone.0135295.s003

K. Mueller, G. Plano, and K. Fields, New Frontiers in Type III Secretion Biology: the Chlamydia Perspective, Infection and Immunity, vol.82, issue.1, pp.2-9, 2014.
DOI : 10.1128/IAI.00917-13

A. Nans, H. Saibil, and R. Hayward, invasion revealed by cryo-electron tomography, Cellular Microbiology, vol.57, issue.10, pp.1457-1472, 2014.
DOI : 10.1111/cmi.12310

A. Nans, M. Kudryashev, H. Saibil, and R. Hayward, Structure of a bacterial type III secretion system in contact with a host membrane in situ, Nature Communications, vol.63, p.10114, 2015.
DOI : 10.1038/msb.2011.75

B. Nguyen, D. Cunningham, X. Liang, X. Chen, E. Toone et al., Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis, Proceedings of the National Academy of Sciences, vol.108, issue.25, pp.10284-10289, 2011.
DOI : 10.1073/pnas.1107478108

B. Nichols, P. Setzer, F. Pang, and C. Dawson, New view of the surface projections of Chlamydia trachomatis, J Bacteriol, vol.164, pp.344-349, 1985.

E. Niehus, E. Cheng, and M. Tan, DNA Supercoiling-Dependent Gene Regulation in Chlamydia, Journal of Bacteriology, vol.190, issue.19, pp.6419-6427, 2008.
DOI : 10.1128/JB.00431-08

A. Omsland, J. Sager, V. Nair, D. Sturdevant, and T. Hackstadt, Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium, Proceedings of the National Academy of Sciences, vol.109, issue.48, pp.19781-19785, 2012.
DOI : 10.1073/pnas.1212831109

A. Omsland, B. Sixt, M. Horn, and T. Hackstadt, Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities, FEMS Microbiology Reviews, vol.38, issue.4, pp.779-801, 2014.
DOI : 10.1111/1574-6976.12059

I. Osaka and P. Hefty, Lipopolysaccharide-Binding Alkylpolyamine DS-96 Inhibits Chlamydia trachomatis Infection by Blocking Attachment and Entry, Antimicrobial Agents and Chemotherapy, vol.58, issue.6, pp.3245-3254, 2014.
DOI : 10.1128/AAC.02391-14

S. Pais, C. Milho, F. Almeida, and L. Mota, Identification of Novel Type III Secretion Chaperone-Substrate Complexes of Chlamydia trachomatis, PLoS ONE, vol.6, issue.2, p.56292, 2013.
DOI : 10.1371/journal.pone.0056292.s005

L. Pedersen, S. Birkelund, and G. Christiansen, Purification of recombinant Chlamydia trachomatis histone H1-like protein Hc2, and comparative functional analysis of Hc2 and Hc1, Molecular Microbiology, vol.65, issue.2, pp.295-311, 1996.
DOI : 10.1073/pnas.92.6.2003

M. Pilhofer, K. Aistleitner, M. Ladinsky, L. Konig, M. Horn et al., Architecture and host interface of environmental chlamydiae revealed by electron cryotomography, Environmental Microbiology, vol.157, issue.Part 5, pp.417-429, 2014.
DOI : 10.1111/1462-2920.12299

F. Randow and R. Youle, Self and Nonself: How Autophagy Targets Mitochondria and Bacteria, Cell Host & Microbe, vol.15, issue.4, pp.403-411, 2014.
DOI : 10.1016/j.chom.2014.03.012

X. Rao, P. Deighan, Z. Hua, X. Hu, J. Wang et al., A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the ?? subunit and the primary ?? subunit, Genes & Development, vol.23, issue.15, pp.1818-1829, 2009.
DOI : 10.1101/gad.1784009

V. Rogov, V. Dötsch, T. Johansen, and V. Kirkin, Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy, Molecular Cell, vol.53, issue.2, pp.167-178, 2014.
DOI : 10.1016/j.molcel.2013.12.014

C. Rosario, B. Hanson, and M. Tan, late genes, Molecular Microbiology, vol.68, issue.4, pp.888-897, 2014.
DOI : 10.1111/mmi.12804

S. Rund, B. Lindner, H. Brade, and O. Holst, Structural Analysis of the Lipopolysaccharide from Chlamydia trachomatis Serotype L2, Journal of Biological Chemistry, vol.274, issue.24, pp.16819-16824, 1999.
DOI : 10.1074/jbc.274.24.16819

K. Rzomp, A. Moorhead, and M. Scidmore, The GTPase Rab4 Interacts with Chlamydia trachomatis Inclusion Membrane Protein CT229, Infection and Immunity, vol.74, issue.9, pp.5362-5373, 2006.
DOI : 10.1128/IAI.00539-06

H. Saka, J. Thompson, Y. Chen, Y. Kumar, L. Dubois et al., Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms, Molecular Microbiology, vol.138, issue.2, pp.1185-1203, 2011.
DOI : 10.1111/j.1365-2958.2011.07877.x

I. Sarov and Y. Becker, Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in purified trachoma elementary bodies: effect of sodium chloride on ribonucleic acid transcription, J Bacteriol, vol.107, pp.593-598, 1971.

J. Schachter, The intracellular life of Chlamydia, Curr Top Microbiol Immunol, vol.138, pp.109-139, 1988.

C. Schwoppe, H. Winkler, and H. Neuhaus, Properties of the Glucose-6-Phosphate Transporter from Chlamydia pneumoniae (HPTcp) and the Glucose-6-Phosphate Sensor from Escherichia coli (UhpC), Journal of Bacteriology, vol.184, issue.8, pp.2108-2115, 2002.
DOI : 10.1128/JB.184.8.2108-2115.2002

M. Scidmore, D. Rockey, E. Fischer, R. Heinzen, and T. Hackstadt, Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry, Infect Immun, vol.64, pp.5366-5372, 1996.

E. Shaw, C. Dooley, E. Fischer, M. Scidmore, K. Fields et al., developmental cycle, Molecular Microbiology, vol.273, issue.4, pp.913-925, 2000.
DOI : 10.1046/j.1365-2958.2000.02057.x

E. Silva-herzog, S. Joseph, A. Avery, J. Coba, K. Wolf et al., Scc1 (CP0432) and Scc4 (CP0033) Function as a Type III Secretion Chaperone for CopN of Chlamydia pneumoniae, Journal of Bacteriology, vol.193, issue.14, pp.3490-3496, 2011.
DOI : 10.1128/JB.00203-11

B. Sixt, A. Siegl, C. Muller, M. Watzka, A. Wultsch et al., Metabolic Features of Protochlamydia amoebophila Elementary Bodies ??? A Link between Activity and Infectivity in Chlamydiae, PLoS Pathogens, vol.8, issue.8, p.1003553, 2013.
DOI : 10.1371/journal.ppat.1003553.s009

P. Skipp, J. Robinson, O. Connor, C. Clarke, and I. , Shotgun proteomic analysis ofChlamydia trachomatis, PROTEOMICS, vol.24, issue.12, pp.1558-1573, 2005.
DOI : 10.1002/pmic.200401044

P. Skipp, C. Hughes, T. Mckenna, R. Edwards, J. Langridge et al., Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis, PLOS ONE, vol.467, issue.7312, p.149011, 2016.
DOI : 10.1371/journal.pone.0149011.s008

R. Stephens, S. Kalman, C. Lammel, J. Fan, R. Marathe et al., Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia trachomatis, Science, vol.282, issue.5389, pp.754-755, 1998.
DOI : 10.1126/science.282.5389.754

P. Subbarayal, K. Karunakaran, A. Winkler, M. Rother, E. Gonzalez et al., EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis, PLOS Pathogens, vol.111, issue.4, p.1004846, 2015.
DOI : 10.1371/journal.ppat.1004846.s006

A. Subtil, C. Delevoye, M. Balañá, L. Tastevin, S. Perrinet et al., A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates, Molecular Microbiology, vol.11, issue.6, pp.1636-1647, 2005.
DOI : 10.1111/j.1365-2958.2005.04647.x

URL : https://hal.archives-ouvertes.fr/hal-00021366

K. Swanson, L. Taylor, S. Frank, G. Sturdevant, E. Fischer et al., Chlamydia trachomatis Polymorphic Membrane Protein D Is an Oligomeric Autotransporter with a Higher-Order Structure, Infection and Immunity, vol.77, issue.1, pp.508-516, 2009.
DOI : 10.1128/IAI.01173-08

A. Tamura, A. Matsumoto, and N. Higashi, Purification and chemical composition of reticulate bodies of the meningopneumonitis organisms, J Bacteriol, vol.93, pp.2003-2008, 1967.

A. Tamura, A. Matsumoto, G. Manire, and N. Higashi, Electron microscopic observations on the structure of the envelopes of mature elementary bodies and developmental reticulate forms of Chlamydia psittaci, J Bacteriol, vol.105, pp.355-360, 1971.

C. Tan, R. Hsia, H. Shou, C. Haggerty, R. Ness et al., Chlamydia trachomatis-Infected Patients Display Variable Antibody Profiles against the Nine-Member Polymorphic Membrane Protein Family, Infection and Immunity, vol.77, issue.8, pp.3218-3226, 2009.
DOI : 10.1128/IAI.01566-08

J. Chen, Z. Zhou, P. Yu, Z. Yang, and G. Zhong, One Face of Chlamydia trachomais: The Infectious Elementary Body Tang L Chlamydia-secreted protease CPAF degrades host antimicrobial peptides, Microbes Infect, vol.17, pp.402-408, 2015.

J. Thalmann, K. Janik, M. May, K. Sommer, J. Ebeling et al., Actin re-organization induced by Chlamydia trachomatis serovar D?evidence for a critical role of the effector protein CT166 targeting Rac The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion, PLoS ONE J Biol Chem, vol.5, issue.289, pp.30426-30442, 2010.

T. Thwaites, A. Pedrosa, T. Peacick, and R. Carabeo, Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane, Frontiers in Cellular and Infection Microbiology, vol.122, p.88, 2015.
DOI : 10.1242/jcs.030478

G. Tipples and G. Mcclarty, The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates, Molecular Microbiology, vol.1, issue.6, pp.1105-1114, 1993.
DOI : 10.1146/annurev.micro.44.1.131

B. Vandahl, S. Birkelund, H. Demol, B. Hoorelbeke, G. Christiansen et al., Proteome analysis of theChlamydia pneumoniaeelementary body, ELECTROPHORESIS, vol.15, issue.6, pp.1204-1223, 2001.
DOI : 10.1002/1522-2683()22:6<1204::AID-ELPS1204>3.0.CO;2-M

F. Vromman, M. Laverriere, S. Perrinet, A. Dufour, A. Subtil et al., Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis, PLoS ONE Infect Immun, vol.9, issue.83, pp.991974710-4718, 2014.

M. Yasir, N. Pachikara, X. Bao, Z. Pan, and H. Fan, Regulation of Chlamydial Infection by Host Autophagy and Vacuolar ATPase-Bearing Organelles, Infection and Immunity, vol.79, issue.10, pp.4019-4028, 2011.
DOI : 10.1128/IAI.05308-11