E. Holmes and Y. Zhang, The evolution and emergence of hantaviruses, Current Opinion in Virology, vol.10, pp.27-33, 2015.
DOI : 10.1016/j.coviro.2014.12.007

B. Klempa, Hantaviruses and climate change, Clinical Microbiology and Infection, vol.15, issue.6, pp.518-541, 2009.
DOI : 10.1111/j.1469-0691.2009.02848.x

URL : http://doi.org/10.1111/j.1469-0691.2009.02848.x

D. Kruger, L. Figueiredo, J. Song, and B. Klempa, Hantaviruses???Globally emerging pathogens, Journal of Clinical Virology, vol.64, pp.128-164, 2015.
DOI : 10.1016/j.jcv.2014.08.033

A. Khan, R. Khabbaz, L. Armstrong, R. Holman, S. Bauer et al., Hantavirus Pulmonary Syndrome: The First 100 US Cases, Journal of Infectious Diseases, vol.173, issue.6, pp.1297-303, 1996.
DOI : 10.1093/infdis/173.6.1297

D. Earle, Foreword, The American Journal of Medicine, vol.16, issue.5, pp.617-709, 1954.
DOI : 10.1016/0002-9343(54)90267-3

J. Nunez, C. Fritz, B. Knust, D. Buttke, B. Enge et al., Hantavirus Infections among Overnight Visitors to Yosemite National Park, California, USA, 2012, Emerging Infectious Diseases, vol.20, issue.3, pp.386-93, 2014.
DOI : 10.3201/eid2003.131581

R. Oliveira, M. Sant-'ana, A. Guterres, J. Fernandes, N. Hillesheim et al., SUMMARY, Epidemiology and Infection, vol.349, issue.05, pp.1-11
DOI : 10.1590/S0074-02762012000300020

A. Tadin, L. Bjedov, J. Margaletic, B. Zibrat, L. Krajinovic et al., High infection rate of bank voles (Myodes glareolus) with Puumala virus is associated with a winter outbreak of haemorrhagic fever with renal syndrome in Croatia, Epidemiology and Infection, vol.13, issue.09, pp.1945-51, 2014.
DOI : 10.1002/(SICI)1096-9071(199710)53:2<174::AID-JMV11>3.0.CO;2-J

P. Yu, H. Tian, C. Ma, C. Ma, J. Wei et al., Hantavirus infection in rodents and haemorrhagic fever with renal syndrome in Shaanxi province, China, Epidemiol Infect, vol.143, issue.2, pp.1984-2012405, 2015.

J. Reguera, P. Gerlach, and S. Cusack, Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases, Current Opinion in Structural Biology, vol.36, pp.75-84, 2016.
DOI : 10.1016/j.sbi.2016.01.002

M. Vaney and F. Rey, Class II enveloped viruses, Cellular Microbiology, vol.10, issue.10, pp.1451-1460, 2011.
DOI : 10.1111/j.1462-5822.2011.01653.x

URL : https://hal.archives-ouvertes.fr/pasteur-00630510

R. Petterson, Synthesis, Assembly, and Intracellular Transport of Bunyaviridae Membrane Proteins, The Bunyaviridae, pp.159-88, 1996.
DOI : 10.1007/978-1-4899-1364-7_7

C. Goldsmith, L. Elliott, C. Peters, and S. Zaki, Ultrastructural characteristics of Sin Nombre virus, causative agent of hantavirus pulmonary syndrome, Archives of Virology, vol.146, issue.12, pp.2107-2129, 1995.
DOI : 10.1007/BF01323234

E. Ravkov, S. Nichol, and R. Compans, Polarized entry and release in epithelial cells of Black Creek Canal virus, a New World hantavirus, J Virol, vol.71, issue.2, pp.1147-54, 1997.

C. Garry and R. Garry, Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes), Theor Biol Med Model, vol.1, issue.10, pp.1742-4682, 2004.

N. Tischler, A. Gonzalez, T. Perez-acle, M. Rosemblatt, and P. Valenzuela, Hantavirus Gc glycoprotein: evidence for a class II fusion protein, Journal of General Virology, vol.86, issue.11, pp.2937-2984, 2005.
DOI : 10.1099/vir.0.81083-0

N. Cifuentes-munoz, G. Barriga, P. Valenzuela, and N. Tischler, Aromatic and polar residues spanning the candidate fusion peptide of the Andes virus Gc protein are essential for membrane fusion and infection, Journal of General Virology, vol.92, issue.3, pp.552-63, 2011.
DOI : 10.1099/vir.0.027235-0

M. Plassmeyer, S. Soldan, K. Stachelek, S. Roth, J. Martin-garcia et al., Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066???1087) as the fusion peptide, Virology, vol.358, issue.2, pp.273-82, 2007.
DOI : 10.1016/j.virol.2006.08.050

M. Dessau and Y. Modis, Crystal structure of glycoprotein C from Rift Valley fever virus, Proceedings of the National Academy of Sciences, vol.110, issue.5, pp.1696-701, 2013.
DOI : 10.1073/pnas.1217780110

J. Huiskonen, A. Overby, F. Weber, and K. Grunewald, Electron Cryo-Microscopy and Single-Particle Averaging of Rift Valley Fever Virus: Evidence for GN-GC Glycoprotein Heterodimers, Journal of Virology, vol.83, issue.8, pp.3762-3771, 2009.
DOI : 10.1128/JVI.02483-08

A. Overby, R. Pettersson, K. Grunewald, and J. Huiskonen, Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus, Proceedings of the National Academy of Sciences, vol.105, issue.7, pp.2375-2384, 2008.
DOI : 10.1073/pnas.0708738105

E. Omari, K. Iourin, O. Harlos, K. Grimes, J. Stuart et al., Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry, Cell Rep, vol.3, issue.1, pp.30-35, 2013.

Y. Li, J. Wang, R. Kanai, and Y. Modis, Crystal structure of glycoprotein E2 from bovine viral diarrhea virus, Proceedings of the National Academy of Sciences, vol.110, issue.17, pp.6805-6815, 2013.
DOI : 10.1073/pnas.1300524110

A. Khan, J. Whidby, M. Miller, H. Scarborough, A. Zatorski et al., Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2, Nature, vol.25, issue.7500, pp.381-385, 2014.
DOI : 10.1038/nature13117

L. Kong, E. Giang, T. Nieusma, R. Kadam, K. Cogburn et al., Hepatitis C Virus E2 Envelope Glycoprotein Core Structure, Science, vol.342, issue.6162, pp.1090-1094, 2013.
DOI : 10.1126/science.1243876

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638

T. Bowden, D. Bitto, A. Mclees, C. Yeromonahos, R. Elliott et al., Orthobunyavirus Ultrastructure and the Curious Tripodal Glycoprotein Spike, PLoS Pathogens, vol.142, issue.5, p.23696739, 2013.
DOI : 10.1371/journal.ppat.1003374.s006

M. Martin, H. Lindsey-regnery, D. Sasso, J. Mccormick, and E. Palmer, Distinction between Bunyaviridae genera by surface structure and comparison with Hantaan virus using negative stain electron microscopy, Archives of Virology, vol.i, issue.1-2, pp.17-28, 1985.
DOI : 10.1007/BF01314110

A. Battisti, Y. Chu, P. Chipman, B. Kaufmann, C. Jonsson et al., Structural Studies of Hantaan Virus, Journal of Virology, vol.85, issue.2, pp.835-876, 2011.
DOI : 10.1128/JVI.01847-10

J. Huiskonen, J. Hepojoki, P. Laurinmaki, A. Vaheri, H. Lankinen et al., Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses, Journal of Virology, vol.84, issue.10, pp.4889-97, 2010.
DOI : 10.1128/JVI.00057-10

S. Li, I. Rissanen, A. Zeltina, J. Hepojoki, J. Raghwani et al., A Molecular-Level Account of the Antigenic Hantaviral Surface, Cell Reports, vol.15, issue.5, pp.959-67, 2016.
DOI : 10.1016/j.celrep.2016.03.082

A. Nissim, H. Hoogenboom, I. Tomlinson, G. Flynn, C. Midgley et al., Antibody fragments from a 'single pot' phage display library as immunochemical reagents, EMBO J, vol.13, issue.3, pp.692-700, 1994.

M. Lefranc, V. Giudicelli, C. Ginestoux, J. Jabado-michaloud, G. Folch et al., IMGT, the international ImMunoGeneTics information system, Nucleic Acids Res, vol.37, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00616561

F. Rey, F. Heinz, C. Mandl, C. Kunz, and S. Harrison, The envelope glycoprotein from tick-borne encephalitis virus at 2 ?? resolution, Nature, vol.375, issue.6529, pp.291-299, 1995.
DOI : 10.1038/375291a0

J. Lescar, A. Roussel, M. Wien, J. Navaza, S. Fuller et al., The Fusion Glycoprotein Shell of Semliki Forest Virus, Cell, vol.105, issue.1, pp.137-185, 2001.
DOI : 10.1016/S0092-8674(01)00303-8

R. Dubois, M. Vaney, M. Tortorici, R. Kurdi, G. Barba-spaeth et al., Functional and evolutionary insight from the crystal structure of rubella virus protein E1, Nature, vol.31, issue.7433, pp.552-558, 2013.
DOI : 10.1016/S0378-5173(99)00207-0

D. Halaby, A. Poupon, and J. Mornon, The immunoglobulin fold family: sequence analysis and 3D structure comparisons, Protein Engineering Design and Selection, vol.12, issue.7, pp.563-71, 1999.
DOI : 10.1093/protein/12.7.563

J. Horling and A. Lundkvist, Single amino acid substitutions in Puumala virus envelope glycoproteins G1 and G2 eliminate important neutralization epitopes, Virus Research, vol.48, issue.1, pp.89-100, 1997.
DOI : 10.1016/S0168-1702(97)01436-6

Z. Xu, L. Wei, L. Wang, H. Wang, and S. Jiang, The in vitro and in vivo protective activity of monoclonal antibodies directed against Hantaan virus: potential application for immunotherapy and passive immunization, Biochemical and Biophysical Research Communications, vol.298, issue.4, pp.552-560, 2002.
DOI : 10.1016/S0006-291X(02)02491-9

X. Lu, W. Yin, Q. Yang, Y. Lei, Y. J. Sun et al., Identification of oligopeptides mimicking the receptor-binding domain of Hantaan virus envelope glycoprotein from a phage-displayed peptide library, Canadian Journal of Microbiology, vol.55, issue.6, pp.664-71, 2009.
DOI : 10.1139/W09-012

G. Yan, Y. Zhang, Y. Ma, Y. J. Liu, B. Xu et al., Identification of a novel B-cell epitope of Hantaan virus glycoprotein recognized by neutralizing 3D8 monoclonal antibody, Journal of General Virology, vol.93, issue.Pt_12, pp.2595-600, 2012.
DOI : 10.1099/vir.0.045302-0

J. Koch, M. Liang, I. Queitsch, A. Kraus, and E. Bautz, Human recombinant neutralizing antibodies against hantaan virus G2 protein, Virology, vol.308, issue.1, pp.64-73, 2003.
DOI : 10.1016/S0042-6822(02)00094-6

URL : http://doi.org/10.1016/s0042-6822(02)00094-6

L. Kleinfelter, R. Jangra, L. Jae, A. Herbert, E. Mittler et al., Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion, mBio, vol.6, issue.4, p.26126854, 2015.
DOI : 10.1128/mBio.00801-15

D. Gibbons, I. Erk, B. Reilly, J. Navaza, M. Kielian et al., Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallography, Cell, vol.114, issue.5, pp.573-83, 2003.
DOI : 10.1016/S0092-8674(03)00683-4

K. Stiasny, S. Bressanelli, J. Lepault, F. Rey, and F. Heinz, Characterization of a Membrane-Associated Trimeric Low-pH-Induced Form of the Class II Viral Fusion Protein E from Tick-Borne Encephalitis Virus and Its Crystallization, Journal of Virology, vol.78, issue.6, pp.3178-833178, 2004.
DOI : 10.1128/JVI.78.6.3178-3183.2004

R. Acuna, E. Bignon, R. Mancini, P. Lozach, and N. Tischler, Acidification triggers Andes hantavirus membrane fusion and rearrangement of Gc into a stable post-fusion homotrimer, J Gen Virol, 2015.

M. Kielian and F. Rey, Virus membrane-fusion proteins: more than one way to make a hairpin, Nature Reviews Microbiology, vol.277, issue.1, pp.67-76, 2006.
DOI : 10.1038/nrmicro1326

Y. Modis, Class II Fusion Proteins, Adv Exp Med Biol, vol.790, pp.150-66, 2013.
DOI : 10.1007/978-1-4614-7651-1_8

D. Klein, J. Choi, and S. Harrison, Structure of a Dengue Virus Envelope Protein Late-Stage Fusion Intermediate, Journal of Virology, vol.87, issue.4, pp.2287-93, 2013.
DOI : 10.1128/JVI.02957-12

S. Bressanelli, K. Stiasny, S. Allison, E. Stura, S. Duquerroy et al., Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation, The EMBO Journal, vol.23, issue.4, pp.728-766, 2004.
DOI : 10.1038/sj.emboj.7600064

D. Gibbons, M. Vaney, A. Roussel, A. Vigouroux, B. Reilly et al., Conformational change and protein???protein interactions of the fusion protein of Semliki Forest virus, Nature, vol.427, issue.6972, pp.320-325, 2004.
DOI : 10.1038/nature02239

S. Halldorsson, A. Behrens, K. Harlos, J. Huiskonen, R. Elliott et al., Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion, Proceedings of the National Academy of Sciences, vol.113, issue.26, pp.7154-7163, 2016.
DOI : 10.1073/pnas.1603827113

Y. Modis, S. Ogata, D. Clements, and S. Harrison, Structure of the dengue virus envelope protein after membrane fusion, Nature, vol.427, issue.6972, pp.313-322, 2004.
DOI : 10.1038/nature02165

G. Barriga, F. Villaló-n-letelier, C. Má-rquez, E. Bignon, R. Acuña et al., Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc, PLOS Neglected Tropical Diseases, vol.13, issue.7, 2016.
DOI : 10.1371/journal.pntd.0004799.s001

M. Liao and M. Kielian, Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion, The Journal of Cell Biology, vol.12, issue.1, pp.111-131, 2005.
DOI : 10.1006/prep.2002.1616

N. Cifuentes-munoz, J. Darlix, and N. Tischler, Development of a lentiviral vector system to study the role of the Andes virus glycoproteins, Virus Research, vol.153, issue.1, pp.29-35, 2010.
DOI : 10.1016/j.virusres.2010.07.001

X. Shi and R. Elliott, Analysis of N-Linked Glycosylation of Hantaan Virus Glycoproteins and the Role of Oligosaccharide Side Chains in Protein Folding and Intracellular Trafficking, Journal of Virology, vol.78, issue.10, pp.5414-225414, 2004.
DOI : 10.1128/JVI.78.10.5414-5422.2004

F. Zheng, L. Ma, L. Shao, G. Wang, F. Chen et al., Defining the N-linked glycosylation site of hantaan virus envelope glycoproteins essential for cell fusion, The Journal of Microbiology, vol.46, issue.2, pp.41-48, 2007.
DOI : 10.1007/s12275-006-0149-1

J. Perez-vargas, T. Krey, C. Valansi, O. Avinoam, A. Haouz et al., Structural Basis of Eukaryotic Cell-Cell Fusion, Cell, vol.157, issue.2, pp.407-426, 2014.
DOI : 10.1016/j.cell.2014.02.020

URL : https://hal.archives-ouvertes.fr/hal-01132332

R. Acuna, N. Cifuentes-munoz, C. Marquez, M. Bulling, J. Klingstrom et al., Hantavirus Gn and Gc Glycoproteins Self-Assemble into Virus-Like Particles, Journal of Virology, vol.88, issue.4, pp.2344-2352, 2014.
DOI : 10.1128/JVI.03118-13

URL : https://hal.archives-ouvertes.fr/pasteur-01134374

P. Somerharju, Pyrene-labeled lipids as tools in membrane biophysics and cell biology, Chemistry and Physics of Lipids, vol.116, issue.1-2, pp.57-74, 2002.
DOI : 10.1016/S0009-3084(02)00020-8

P. Gauci, J. Mcallister, I. Mitchell, D. Boyle, D. Bulach et al., Genomic Characterisation of Three Mapputta Group Viruses, a Serogroup of Australian and Papua New Guinean Bunyaviruses Associated with Human Disease, PLOS ONE, vol.364, issue.1, p.25588016, 2015.
DOI : 10.1371/journal.pone.0116561.s002

J. Meng, P. Liu, L. Zhu, C. Zou, J. Li et al., Complete Genome Sequence of Mulberry Vein Banding Associated Virus, a New Tospovirus Infecting Mulberry, PLOS ONE, vol.156, issue.8, p.26291718, 2015.
DOI : 10.1371/journal.pone.0136196.s001

M. Backovic and T. Jardetzky, Class III viral membrane fusion proteins, Current Opinion in Structural Biology, vol.19, issue.2, pp.189-96, 2009.
DOI : 10.1016/j.sbi.2009.02.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076093

M. Dube, F. Rey, and M. Kielian, Rubella Virus: First Calcium-Requiring Viral Fusion Protein, PLoS Pathogens, vol.74, issue.11, p.25474548, 2014.
DOI : 10.1371/journal.ppat.1004530.s006

M. Vincent, A. Sanchez, B. Erickson, A. Basak, M. Chretien et al., Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Proteolytic Processing by Subtilase SKI-1, Journal of Virology, vol.77, issue.16, pp.8640-98640, 2003.
DOI : 10.1128/JVI.77.16.8640-8649.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC167219

P. Kristensen and G. Winter, Proteolytic selection for protein folding using filamentous bacteriophages, Folding and Design, vol.3, issue.5, pp.321-329, 1998.
DOI : 10.1016/S1359-0278(98)00044-3

A. Sivasubramanian, A. Sircar, S. Chaudhury, and J. Gray, Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking, Proteins. Epub, vol.7412, issue.2, pp.497-514, 2008.

S. Lyskov, F. Chou, S. Conchuir, B. Der, K. Drew et al., Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE), PLoS ONE, vol.819, issue.5, pp.63906-23717507, 2013.
DOI : 10.1371/journal.pone.0063906.t003

A. Mccoy, R. Grosse-kunstleve, P. Adams, M. Winn, L. Storoni et al., crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-74, 2007.
DOI : 10.1107/S0021889807021206

P. Adams, P. Afonine, G. Bunkoczi, V. Chen, I. Davis et al., : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-234, 2010.
DOI : 10.1107/S0907444909052925

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815670

T. Terwilliger and R. Solve, Automated structure solution, density modification and model building, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.11, pp.49-52, 2003.
DOI : 10.1107/S0907444902016438

V. Chen, W. Arendall, J. Headd, D. Keedy, R. Immormino et al., : all-atom structure validation for macromolecular crystallography, Acta Crystallographica Section D Biological Crystallography, vol.285, issue.1, pp.12-21, 2010.
DOI : 10.1107/S0907444909042073

H. Zheng, M. Chordia, D. Cooper, M. Chruszcz, P. Muller et al., Validation of metalbinding sites in macromolecular structures with the CheckMyMetal web server, Nat Protoc, vol.2014, issue.91, pp.156-70

J. Castile and K. Taylor, Factors affecting the size distribution of liposomes produced by freeze???thaw extrusion, International Journal of Pharmaceutics, vol.188, issue.1, pp.87-95, 1999.
DOI : 10.1016/S0378-5173(99)00207-0

P. Godoy, D. Marsac, E. Stefas, P. Ferrer, N. Tischler et al., Andes Virus Antigens Are Shed in Urine of Patients with Acute Hantavirus Cardiopulmonary Syndrome, Journal of Virology, vol.83, issue.10, pp.5046-55, 2009.
DOI : 10.1128/JVI.02409-08

P. Mangeot, D. Negre, B. Dubois, A. Winter, P. Leissner et al., Development of Minimal Lentivirus Vectors Derived from Simian Immunodeficiency Virus (SIVmac251) and Their Use for Gene Transfer into Human Dendritic Cells, Journal of Virology, vol.74, issue.18, pp.8307-8322, 2000.
DOI : 10.1128/JVI.74.18.8307-8315.2000

P. Mangeot, K. Duperrier, D. Negre, B. Boson, D. Rigal et al., High Levels of Transduction of Human Dendritic Cells with Optimized SIV Vectors, Molecular Therapy, vol.5, issue.3, pp.283-90, 2002.
DOI : 10.1006/mthe.2002.0541

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-82
DOI : 10.1038/nmeth.2019

L. Schrodinger, The PyMOL Molecular Graphics System, Version 1.8, 2015.

D. Buchan, F. Minneci, T. Nugent, K. Bryson, and D. Jones, Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Research, vol.41, issue.W1, pp.349-57, 2013.
DOI : 10.1093/nar/gkt381

D. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091