M. Becker-andre, E. Andre, and J. Delamarter, Identification of Nuclear Receptor mRNAs by RT-PCR Amplification of Conserved Zinc-Finger Motif Sequences, Biochemical and Biophysical Research Communications, vol.194, issue.3, pp.1371-1380, 1993.
DOI : 10.1006/bbrc.1993.1976

C. Carlberg, R. Hooft-van-huijsduijnen, J. K. Staple, J. F. Delamarter, and M. Becker-andre, RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers, pp.757-770, 1994.

V. Giguere, Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors., Genes & Development, vol.8, issue.5, pp.538-53, 1994.
DOI : 10.1101/gad.8.5.538

T. Hirose, R. J. Smith, and A. M. Jetten, ROR-??: The Third Member of ROR/RZR Orphan Receptor Subfamily That Is Highly Expressed in Skeletal Muscle, Biochemical and Biophysical Research Communications, vol.205, issue.3, pp.1976-1983, 1994.
DOI : 10.1006/bbrc.1994.2902

A. Medvedev, Z. H. Yan, T. Hirose, V. Giguere, and A. M. Jetten, Cloning of a cDNA encoding the murine orphan receptor RZR/ROR? and characterization of its response element, pp.199-206, 1996.

M. Becker-andre, Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily., Journal of Biological Chemistry, vol.272, issue.26, pp.28531-28534, 1994.
DOI : 10.1074/jbc.272.26.16707

I. Wiesenberg, M. Missbach, J. P. Kahlen, M. Schrader, and C. Carlberg, Transcriptional activation of the nuclear receptor RZR ? by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand, Nucleic Acids Res23, pp.327-333, 1995.

C. Carlberg and I. Wiesenberg, The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: An unexpected relationship, Journal of Pineal Research, vol.23, issue.4, pp.171-178, 1995.
DOI : 10.1016/0922-4106(93)90084-M

Y. W. He, M. L. Deftos, E. W. Ojala, and M. J. Bevan, ROR?t, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells, pp.797-806, 1998.

Z. Sun, Requirement for ROR? in thymocyte survival and lymphoid organ development, pp.2369-2373, 2000.

S. Kurebayashi, Retinoid-related orphan receptor ? (ROR?) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis, Proc Natl Acad Sci, pp.10132-10137, 2000.

G. Eberl, An essential function for the nuclear receptor ROR??t in the generation of fetal lymphoid tissue inducer cells, Nature Immunology, vol.5, issue.1, pp.64-73, 2004.
DOI : 10.1038/ni1022

R. E. Mebius, P. R. Streeter, S. Michie, E. C. Butcher, and I. L. Weissman, A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes., Proceedings of the National Academy of Sciences, vol.93, issue.20, pp.11019-11024, 1996.
DOI : 10.1073/pnas.93.20.11019

R. E. Mebius, P. Rennert, and I. L. Weissman, Developing lymph nodes collect CD4 + CD3 -LT? + cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells, pp.493-504, 1997.
DOI : 10.1016/s1074-7613(00)80371-4

URL : http://doi.org/10.1016/s1074-7613(00)80371-4

S. Adachi, H. Yoshida, H. Kataoka, and S. Nishikawa, Three distinctive steps in Peyer's patch formation of murine embryo, International Immunology, vol.9, issue.4, pp.507-514, 1997.
DOI : 10.1093/intimm/9.4.507

D. J. Cua, Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain, Nature, vol.1, issue.6924, pp.744-752, 2003.
DOI : 10.1038/nature01355

C. L. Langrish, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, The Journal of Experimental Medicine, vol.71, issue.2, pp.233-273, 2005.
DOI : 10.1038/nri802

I. Ivanov, The orphan nuclear receptor ROR?t directs the differentiation program of proinflammatory IL-17 + T helper cells, pp.1121-1133, 2006.

N. Satoh-takayama, Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense, Immunity, vol.29, issue.6, pp.958-70, 2008.
DOI : 10.1016/j.immuni.2008.11.001

URL : https://hal.archives-ouvertes.fr/pasteur-01402754

C. Luci, Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin, pp.75-82, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403251

S. L. Sanos, RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells, pp.83-91, 2009.

M. Cella, A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity, Nature, vol.3, issue.7230, pp.722-727, 2009.
DOI : 10.1038/nature07537

H. Spits, Innate lymphoid cells ??? a proposal for uniform nomenclature, Nature Reviews Immunology, vol.37, issue.2, pp.145-154, 2013.
DOI : 10.1038/nri3365

H. Spits and J. P. Di-santo, The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nature Immunology, vol.169, issue.1, 2011.
DOI : 10.1016/j.molimm.2004.06.010

G. Eberl, M. Colonna, D. Santo, J. P. Mckenzie, and A. N. , Innate lymphoid cells: A new paradigm in immunology, Science, vol.348, issue.6237, p.6566, 2015.
DOI : 10.1126/science.aaa6566

URL : https://hal.archives-ouvertes.fr/pasteur-01402704

N. Preitner, The orphan nuclear receptor REV-ERB? controls circadian transcription within the positive limb of the mammalian circadian oscillator, pp.251-260, 2002.

H. R. Ueda, A transcription factor response element for gene expression during circadian night, Nature, vol.91, issue.6897, pp.534-539, 2002.
DOI : 10.1038/83751

X. Yu, TH17 Cell Differentiation Is Regulated by the Circadian Clock, Science, vol.342, issue.6159, pp.727-757, 2013.
DOI : 10.1126/science.1243884

F. R. Santori, Identification of natural RORgamma ligands that regulate the development of lymphoid cells, Cell, vol.21, pp.286-97, 2015.

J. G. Cyster, E. V. Dang, A. Reboldi, and T. Yi, 25-Hydroxycholesterols in innate and adaptive immunity, Nature Reviews Immunology, vol.37, issue.11, pp.731-774, 2014.
DOI : 10.1038/ni.2570

H. Yoshida, IL-7 receptor ? + CD3 -cells in the embryonic intestine induces the organizing center of Peyer's patches. Int Immunol11, pp.643-655, 1999.

K. Honda, Molecular Basis for Hematopoietic/Mesenchymal Interaction during Initiation of Peyer's Patch Organogenesis, The Journal of Experimental Medicine, vol.129, issue.5, pp.621-630, 2001.
DOI : 10.1038/11943

D. Kim, Regulation of Peripheral Lymph Node Genesis by the Tumor Necrosis Factor Family Member Trance, The Journal of Experimental Medicine, vol.65, issue.10, pp.1467-1478, 2000.
DOI : 10.1038/336772a0

D. Togni and P. , Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin, Science, vol.264, issue.5159, pp.703-707, 1994.
DOI : 10.1126/science.8171322

P. D. Rennert, J. L. Browning, R. Mebius, F. Mackay, and P. S. Hochman, Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs, Journal of Experimental Medicine, vol.184, issue.5, pp.1999-2006, 1996.
DOI : 10.1084/jem.184.5.1999

M. B. Alimzhanov, Abnormal development of secondary lymphoid tissues in lymphotoxin ??-deficient mice, Proceedings of the National Academy of Sciences, vol.94, issue.17, pp.9302-9307, 1997.
DOI : 10.1073/pnas.94.17.9302

E. Dejardin, The lymphotoxin-? receptor induces different patterns of gene expression via two NF-kappaB pathways, pp.525-535, 2002.

Y. Kanamori, Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop, Journal of Experimental Medicine, vol.184, issue.4, pp.1449-1459, 1996.
DOI : 10.1084/jem.184.4.1449

G. Eberl and D. R. Littman, Thymic Origin of Intestinal ???? T Cells Revealed by Fate Mapping of ROR??t+ Cells, Science, vol.305, issue.5681, pp.248-251, 2004.
DOI : 10.1126/science.1096472

H. Hamada, Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse Small Intestine, The Journal of Immunology, vol.168, issue.1, pp.57-64, 2002.
DOI : 10.4049/jimmunol.168.1.57

R. G. Lorenz, D. D. Chaplin, K. G. Mcdonald, J. S. Mcdonough, and R. D. Newberry, Isolated Lymphoid Follicle Formation Is Inducible and Dependent Upon Lymphotoxin-Sufficient B Lymphocytes, Lymphotoxin ?? Receptor, and TNF Receptor I Function, The Journal of Immunology, vol.170, issue.11, pp.5475-5482, 2003.
DOI : 10.4049/jimmunol.170.11.5475

M. Tsuji, Requirement for Lymphoid Tissue-Inducer Cells in Isolated Follicle Formation and T Cell-Independent Immunoglobulin A Generation in the Gut, Immunity, vol.29, issue.2, pp.261-271, 2008.
DOI : 10.1016/j.immuni.2008.05.014

D. Bouskra, Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis, Nature, vol.194, issue.7221, pp.507-517, 2008.
DOI : 10.1038/nature07450

URL : https://hal.archives-ouvertes.fr/pasteur-01402759

S. E. Girardin, Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan, Science, vol.300, issue.5625, pp.1584-1587, 2003.
DOI : 10.1126/science.1084677

K. G. Mcdonald, CC Chemokine Receptor 6 Expression by B Lymphocytes Is Essential for the Development of Isolated Lymphoid Follicles, The American Journal of Pathology, vol.170, issue.4, pp.1229-1240, 2007.
DOI : 10.2353/ajpath.2007.060817

M. Lochner, Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of ROR??t and LTi cells, The Journal of Experimental Medicine, vol.14, issue.1, pp.125-134, 2011.
DOI : 10.1097/01.MIB.0000218764.06959.91

F. Aloisi and R. Pujol-borrell, Lymphoid neogenesis in chronic inflammatory diseases, Nature Reviews Immunology, vol.68, issue.3, pp.205-222, 2006.
DOI : 10.1006/clin.1993.1169

E. C. Mackley, CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes, p.5862, 2015.

S. Sawa, Lineage relationship analysis of ROR?t+ innate lymphoid cells, pp.665-674, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01402753

A. Reynders, Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat-lymphoid cells, pp.2934-2981, 2011.

N. Satoh-takayama, The Chemokine Receptor CXCR6 Controls the Functional Topography of Interleukin-22 Producing Intestinal Innate Lymphoid Cells, Immunity, vol.41, issue.5, pp.776-788, 2014.
DOI : 10.1016/j.immuni.2014.10.007

URL : https://hal.archives-ouvertes.fr/pasteur-01090414

C. S. Klose, A T-bet gradient controls the fate and function of CCR6- RORgammat+ innate lymphoid cells, pp.261-266, 2013.

N. K. Crellin, Regulation of cytokine secretion in human CD127(+) LTilike innate lymphoid cells by Toll-like receptor 2. Immunity33, pp.752-64, 2010.

Y. Wang, Lymphotoxin Beta Receptor Signaling in Intestinal Epithelial Cells Orchestrates Innate Immune Responses against Mucosal Bacterial Infection, Immunity, vol.32, issue.3, pp.403-416, 2010.
DOI : 10.1016/j.immuni.2010.02.011

A. A. Kruglov, Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis, pp.1243-1249, 2013.

G. Magri, Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells, Nature Immunology, vol.180, issue.4, pp.354-64, 2014.
DOI : 10.1016/j.immuni.2012.03.027

X. Fan and A. Rudensky, Hallmarks of Tissue-Resident Lymphocytes, Cell, vol.164, issue.6, pp.1198-211, 2016.
DOI : 10.1016/j.cell.2016.02.048

J. C. Sun, J. N. Beilke, and L. L. Lanier, Adaptive immune features of natural killer cells, pp.557-61, 2009.

P. P. Hernandez, Interferon-lambda and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection, pp.698-707, 2015.

G. F. Sonnenberg, Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria, Science, vol.336, issue.6086, pp.1321-1326, 2012.
DOI : 10.1126/science.1222551

S. Sawa, RORgammat(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota, pp.320-326, 2011.

P. Aparicio-domingo, Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage, The Journal of Experimental Medicine, vol.11, issue.11, pp.1783-91, 2015.
DOI : 10.1016/j.hoc.2012.02.002

C. A. Lindemans, Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration, Nature, vol.34, issue.7583, pp.560-564, 2015.
DOI : 10.1038/nature16460

J. A. Dudakov, Interleukin-22 Drives Endogenous Thymic Regeneration in Mice, Science, vol.336, issue.6077, pp.91-96, 2012.
DOI : 10.1126/science.1218004

L. A. Zenewicz, Interleukin-22 but Not Interleukin-17 Provides Protection to Hepatocytes during Acute Liver Inflammation, Immunity, vol.27, issue.4, pp.647-59, 2007.
DOI : 10.1016/j.immuni.2007.07.023

G. Gasteiger, X. Fan, S. Dikiy, S. Y. Lee, and A. Rudensky, Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs, Science, vol.350, issue.6263, pp.981-986, 2015.
DOI : 10.1126/science.aac9593

S. Kirchberger, Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model, The Journal of Experimental Medicine, vol.118, issue.5, pp.917-948, 2013.
DOI : 10.1074/jbc.M611040200

S. Buonocore, Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology, Nature, vol.148, issue.7293, pp.1371-1376, 2010.
DOI : 10.1038/nature08949

A. Geremia, IL-23???responsive innate lymphoid cells are increased in inflammatory bowel disease, The Journal of Experimental Medicine, vol.208, issue.6, pp.1127-1160, 2011.
DOI : 10.1172/JCI21404

H. Y. Kim, Interleukin-17???producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity, Nature Medicine, vol.181, issue.1, pp.54-61, 2014.
DOI : 10.1038/nm851

R. Burcelin, L. Garidou, and C. Pomie, Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol24, pp.67-74, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00756745

M. R. Hepworth, Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria, Nature, vol.7, issue.7452, pp.113-120, 2013.
DOI : 10.1038/nature12240

N. Von-burg, Activated group 3 innate lymphoid cells promote T-cellmediated immune responses, Proc Natl Acad Sci, pp.12835-12875, 2014.

A. Mortha, Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis, Science, vol.343, issue.6178, p.1249288, 2014.
DOI : 10.1126/science.1249288

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291125

L. A. Solt, Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand, Nature, vol.2, issue.7344, pp.491-495, 2011.
DOI : 10.1038/nature10075

J. R. Huh, Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity, pp.486-90, 2011.

D. R. Withers, Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells, pp.319-342, 2016.

J. Guo, Regulation of the TCR? repertoire by the survival window of CD4 + CD8 + thymocytes, pp.469-476, 2002.

C. Sutton, C. Brereton, B. Keogh, K. H. Mills, and E. C. Lavelle, A crucial role for interleukin (IL)-1 in the induction of IL-17???producing T cells that mediate autoimmune encephalomyelitis, The Journal of Experimental Medicine, vol.203, issue.7, pp.1685-91, 2006.
DOI : 10.1074/jbc.M308809200

L. E. Harrington, Interleukin 17???producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, Nature Immunology, vol.173, issue.11, pp.1123-1155, 2005.
DOI : 10.1016/S1074-7613(00)80470-7

P. R. Mangan, Transforming growth factor-beta induces development of the T(H)17 lineage, pp.231-235, 2006.

E. Bettelli, Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature, vol.31, issue.7090, pp.235-243, 2006.
DOI : 10.1038/nature04753

L. Zhou, TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function, pp.236-276, 2008.

T. J. Harris, Cutting Edge: An In Vivo Requirement for STAT3 Signaling in TH17 Development and TH17-Dependent Autoimmunity, The Journal of Immunology, vol.179, issue.7, pp.4313-4320, 2007.
DOI : 10.4049/jimmunol.179.7.4313

K. Sato, Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction, The Journal of Cell Biology, vol.175, issue.4, pp.2673-82, 2006.
DOI : 10.1084/jem.20061775

K. Hirota, Th cells that cause autoimmune arthritis, The Journal of Experimental Medicine, vol.155, issue.1, pp.41-48, 2007.
DOI : 10.1038/ng1673

C. O. Elson, Monoclonal Anti???Interleukin 23 Reverses Active Colitis in a T Cell???Mediated Model in Mice, Gastroenterology, vol.132, issue.7, pp.2359-70, 2007.
DOI : 10.1053/j.gastro.2007.03.104

R. A. Kastelein, C. A. Hunter, and D. J. Cua, Discovery and Biology of IL-23 and IL-27: Related but Functionally Distinct Regulators of Inflammation, Annual Review of Immunology, vol.25, issue.1, pp.221-263, 2007.
DOI : 10.1146/annurev.immunol.22.012703.104758

S. J. Aujla, IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia, Nature Medicine, vol.99, issue.3, pp.275-81, 2008.
DOI : 10.1038/nm1710

S. A. Khader, S. L. Gaffen, and J. Kolls, Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa, Mucosal Immunology, vol.177, issue.5, pp.403-414, 2009.
DOI : 10.1007/s00011-007-6187-2

T. Sano, An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses, pp.381-93, 2015.

K. Atarashi, ATP drives lamina propria T(H)17 cell differentiation, pp.808-820, 2008.

I. I. Ivanov, Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria, Cell, vol.139, issue.3, pp.485-498, 2009.
DOI : 10.1016/j.cell.2009.09.033

V. Gaboriau-routhiau, The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses, Immunity, vol.31, issue.4, pp.677-89, 2009.
DOI : 10.1016/j.immuni.2009.08.020

K. Atarashi, Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells, Cell, vol.163, issue.2, pp.367-80, 2015.
DOI : 10.1016/j.cell.2015.08.058

M. Lochner, T cells, The Journal of Experimental Medicine, vol.205, issue.6, pp.1381-93, 2008.
DOI : 10.1084/jem.20071451

URL : https://hal.archives-ouvertes.fr/pasteur-01402753

E. Wohlfert and Y. Belkaid, Plasticity of T reg at infected sites. Mucosal Immunol3, pp.213-218, 2010.

B. H. Yang, Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation, pp.444-57, 2016.

N. R. Blatner, Expression of RORgammat Marks a Pathogenic Regulatory T Cell Subset in Human Colon Cancer, Sci Transl, vol.4, pp.164-159, 2012.

C. Ohnmacht, The microbiota regulates type 2 immunity through RORgt+ T cells, pp.989-93, 2015.

E. Sefik, Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells, pp.993-1000, 2015.

C. Schiering, The alarmin IL-33 promotes regulatory T-cell function in the intestine, Nature, vol.12, issue.7519, pp.564-572, 2014.
DOI : 10.1038/nature13577

E. A. Wohlfert, GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice, Journal of Clinical Investigation, vol.121, issue.11, pp.4503-4518, 2011.
DOI : 10.1172/JCI57456DS1

G. Eberl, Immunity by equilibrium, Nature Reviews Immunology, vol.17, issue.8, p.75, 2016.
DOI : 10.1038/nri.2016.75

URL : https://hal.archives-ouvertes.fr/hal-01402375

P. R. Taylor, Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2, pp.143-51, 2014.

A. Savers, Infection-Mediated Priming of Phagocytes Protects against Lethal Secondary Aspergillus fumigatus Challenge, PLOS ONE, vol.10, issue.4, p.153829, 2016.
DOI : 10.1371/journal.pone.0153829.s003

URL : https://hal.archives-ouvertes.fr/pasteur-01448226

S. Ferretti, O. Bonneau, G. R. Dubois, C. E. Jones, and A. Trifilieff, IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharideinduced airway neutrophilia: IL-15 as a possible trigger, J, vol.170, pp.2106-2118, 2003.

J. A. Kallen, X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha, pp.1697-707, 2002.

P. Soroosh, Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation, Proc Natl Acad Sci, pp.12163-12171, 2014.

T. Xu, Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORgamma t protein, J Biol, vol.286, pp.22707-22717, 2011.

J. R. Huh and D. R. Littman, Small molecule inhibitors of RORgammat: targeting Th17 cells and other applications, 2012.

M. W. Teng, IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases, Nature Medicine, vol.185, issue.7, pp.719-748, 2015.
DOI : 10.1038/nm.3895

M. Kathania, Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination. Nat Immunol10, p.3488, 1038.

Y. Jianjun, T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation, J Exp, vol.210, pp.1447-62, 2013.

V. Lazarevic, T-bet represses T(H)17 differentiation by preventing Runx1- mediated activation of the gene encoding RORgammat, pp.96-104, 2011.

D. M. Gascoyne, The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development, pp.1118-1142, 2009.

T. L. Geiger, Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens, The Journal of Experimental Medicine, vol.15, issue.9, pp.1723-1754, 2014.
DOI : 10.1126/science.1243884

C. Seillet, Nfil3 is required for the development of all innate lymphoid cell subsets, The Journal of Experimental Medicine, vol.211, issue.9, pp.1733-1773, 2014.
DOI : 10.1038/nri3365

W. Xu, NFIL3 Orchestrates the Emergence of Common Helper Innate Lymphoid Cell Precursors, Cell Reports, vol.10, issue.12, 2015.
DOI : 10.1016/j.celrep.2015.02.057

URL : https://hal.archives-ouvertes.fr/pasteur-01138721

Y. Takeda, R. Jothi, V. Birault, and A. M. Jetten, RORgamma directly regulates the circadian expression of clock genes and downstream targets in vivo, Nucleic Acids Res40, pp.8519-8554, 2012.

D. J. Kojetin and T. P. Burris, REV-ERB and ROR nuclear receptors as drug targets, Nature Reviews Drug Discovery, vol.43, issue.3, pp.197-216, 2014.
DOI : 10.1124/mol.112.078667