F. D. Lowy, Methicillin-resistant Staphylococcus aureus: where is it coming from and where is it going? JAMA Internal Med, pp.1978-1979, 2013.

A. C. Uhlemann, M. Otto, F. D. Lowy, and F. Deleo, Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus, Infection, Genetics and Evolution, vol.21, pp.563-574, 2014.
DOI : 10.1016/j.meegid.2013.04.030

M. A. Banevicius, N. Kaplan, B. Hafkin, and D. P. Nicolau, Pharmacokinetics, pharmacodynamics and efficacy of novel FabI inhibitor AFN-1252 against MSSA and MRSA in the murine thigh infection model, Journal of Chemotherapy, vol.42, issue.4, pp.26-31, 2013.
DOI : 10.1128/AAC.00400-09

S. Escaich, The MUT056399 Inhibitor of FabI Is a New Antistaphylococcal Compound, Antimicrobial Agents and Chemotherapy, vol.55, issue.10, pp.4692-4697, 2011.
DOI : 10.1128/AAC.01248-10

Z. Feng, D. Chakraborty, S. B. Dewell, B. V. Reddy, and S. F. Brady, Environmental DNA-Encoded Antibiotics Fasamycins A and B Inhibit FabF in Type II Fatty Acid Biosynthesis, Journal of the American Chemical Society, vol.134, issue.6, pp.2981-2987, 2012.
DOI : 10.1021/ja207662w

D. T. Moir, T. J. Opperman, M. M. Butler, and T. Bowlin, New classes of antibiotics, Current Opinion in Pharmacology, vol.12, issue.5, pp.535-544, 2012.
DOI : 10.1016/j.coph.2012.07.004

H. S. Park, Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor, Journal of Antimicrobial Chemotherapy, vol.60, issue.3, pp.568-574, 2007.
DOI : 10.1093/jac/dkm236

H. S. Park, CG400462, a new bacterial enoyl???acyl carrier protein reductase (FabI) inhibitor, International Journal of Antimicrobial Agents, vol.30, issue.5, pp.446-451, 2007.
DOI : 10.1016/j.ijantimicag.2007.07.006

J. Schiebel, Rational Design of Broad Spectrum Antibacterial Activity Based on a Clinically Relevant Enoyl-Acyl Carrier Protein (ACP) Reductase Inhibitor, Journal of Biological Chemistry, vol.289, issue.23, pp.15987-16005, 2014.
DOI : 10.1074/jbc.M113.532804

J. Wang, Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties, Proc. Natl Acad. Sci. USA, pp.7612-7616, 2007.
DOI : 10.1073/pnas.0700746104

J. Wang, Platensimycin is a selective FabF inhibitor with potent antibiotic properties, Nature, vol.50, issue.7091, pp.358-361, 2006.
DOI : 10.1016/0022-2836(71)90324-X

L. M. Mcmurry, M. Oethinger, and S. B. Levy, Triclosan targets lipid synthesis, Nature, vol.394, issue.6693, pp.531-532, 1998.
DOI : 10.1038/28970

J. Webster, J. L. Faoagali, and D. Cartwright, Elimination of methicillin-resistant Staphylococcus aureus from a neonatal intensive care unit after hand washing with triclosan, Journal of Paediatrics and Child Health, vol.11, issue.1, pp.59-64, 1994.
DOI : 10.1093/jac/11.1.21

A. I. Bamber and T. J. Neal, An assessment of triclosan susceptibility in methicillin-resistant and methicillin-sensitive Staphylococcus aureus, Journal of Hospital Infection, vol.41, issue.2, pp.107-109, 1999.
DOI : 10.1016/S0195-6701(99)90047-6

H. N. Bhargava and P. A. Leonard, Triclosan: Applications and safety, American Journal of Infection Control, vol.24, issue.3, pp.209-218, 1996.
DOI : 10.1016/S0196-6553(96)90017-6

N. P. Brenwald and A. P. Fraise, Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA), Journal of Hospital Infection, vol.55, issue.2, pp.141-144, 2003.
DOI : 10.1016/S0195-6701(03)00222-6

G. Cherednichenko, Triclosan impairs excitation-contraction coupling and Ca 2 þ dynamics in striated muscle, Proc. Natl Acad. Sci. USA, pp.14158-14163, 2012.

A. K. Syed, S. Ghosh, N. G. Love, and B. Boles, Triclosan Promotes Staphylococcus aureus Nasal Colonization, mBio, vol.5, issue.2, p.1015, 2014.
DOI : 10.1128/mBio.01015-13

URL : http://doi.org/10.1128/mbio.01015-13

M. F. Yueh, The commonly used antimicrobial additive triclosan is a liver tumor promoter, Proc. Natl Acad. Sci. USA, 2014.
DOI : 10.1073/pnas.1419119111

M. L. Ciusa, A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus, International Journal of Antimicrobial Agents, vol.40, issue.3, pp.210-220, 2012.
DOI : 10.1016/j.ijantimicag.2012.04.021

W. Balemans, Essentiality of FASII pathway for Staphylococcus aureus, Nature, vol.458, issue.7279, pp.3-4, 2010.
DOI : 10.1038/nature08667

N. Kaplan, C. Garner, and B. Hafkin, AFN-1252 in vitro absorption studies and pharmacokinetics following microdosing in healthy subjects, European Journal of Pharmaceutical Sciences, vol.50, issue.3-4, pp.440-446, 2013.
DOI : 10.1016/j.ejps.2013.08.019

J. B. Parsons and C. Rock, Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?, Current Opinion in Microbiology, vol.14, issue.5, pp.544-549, 2011.
DOI : 10.1016/j.mib.2011.07.029

J. Schiebel, Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In??Vivo Essentiality, Structure, vol.20, issue.5, pp.802-813, 2012.
DOI : 10.1016/j.str.2012.03.013

S. Brinster, Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens, Nature, vol.178, issue.7234, pp.83-86, 2009.
DOI : 10.1038/nature07772

URL : https://hal.archives-ouvertes.fr/pasteur-00366166

S. Brinster, Brinster et al. reply, Nature, vol.13, issue.7279, pp.4-5, 2010.
DOI : 10.1038/nature08668

J. B. Parsons, M. W. Frank, C. Subramanian, P. Saenkham, and C. Rock, Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors, Proc. Natl. Acad. Sci. USA, pp.15378-15383, 2011.
DOI : 10.1073/pnas.1109208108

L. Zhu, The Two Functional Enoyl-Acyl Carrier Protein Reductases of Enterococcus faecalis Do Not Mediate Triclosan Resistance, mBio, vol.4, issue.5, pp.613-00613, 2013.
DOI : 10.1128/mBio.00613-13

N. Kaplan, Mode of Action, In Vitro Activity, and In Vivo Efficacy of AFN-1252, a Selective Antistaphylococcal FabI Inhibitor, Antimicrobial Agents and Chemotherapy, vol.56, issue.11, pp.5865-5874, 2012.
DOI : 10.1128/AAC.01411-12

J. B. Parsons, Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252, Antimicrobial Agents and Chemotherapy, vol.57, issue.5, pp.2182-2190, 2013.
DOI : 10.1128/AAC.02307-12

J. B. Parsons, Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus, Proc. Natl Acad. Sci. USA 111, pp.10532-10537, 2014.
DOI : 10.1073/pnas.1408797111

J. B. Parsons, M. W. Frank, J. W. Rosch, and C. Rock, Staphylococcus aureus Fatty Acid Auxotrophs Do Not Proliferate in Mice, Antimicrobial Agents and Chemotherapy, vol.57, issue.11, pp.5729-5732, 2013.
DOI : 10.1128/AAC.01038-13

J. Coleman, Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol- 3-phosphate acyltransferase (plsC), Mol. Gen. Genet, vol.232, pp.295-303, 1992.

J. B. Parsons, J. Yao, P. Jackson, M. Frank, and C. Rock, Phosphatidylglycerol homeostasis in glycerol-phosphate auxotrophs of Staphylococcus aureus, BMC Microbiology, vol.13, issue.1, p.260, 2013.
DOI : 10.1111/1574-6968.12037

T. Nakamura, Serum fatty acid levels, dietary style and coronary heart disease in three neighbouring areas in Japan: the Kumihama study, British Journal of Nutrition, vol.51, issue.02, pp.267-272, 2003.
DOI : 10.1093/ije/26.6.1182

N. Raghallaigh, S. Bender, K. Lacey, N. Brennan, L. Powell et al., The fatty acid profile of the skin surface lipid layer in papulopustular rosacea, British Journal of Dermatology, vol.130, issue.Suppl. 1, pp.279-287, 2012.
DOI : 10.1111/j.1365-2133.2011.10662.x

D. L. Greenway and K. G. Dyke, Mechanism of the Inhibitory Action of Linoleic Acid on the Growth of Staphylococcus aureus, Journal of General Microbiology, vol.115, issue.1, pp.233-245, 1979.
DOI : 10.1099/00221287-115-1-233

J. B. Parsons, J. Yao, M. W. Frank, P. Jackson, and C. Rock, Membrane Disruption by Antimicrobial Fatty Acids Releases Low-Molecular-Weight Proteins from Staphylococcus aureus, Journal of Bacteriology, vol.194, issue.19, pp.5294-5304, 2012.
DOI : 10.1128/JB.00743-12

M. Krishnamurthy, S. Tadesse, K. Rothmaier, and P. L. Graumann, A novel SMC-like protein, SbcE (YhaN), is involved in DNA double-strand break repair and competence in Bacillus subtilis, Nucleic Acids Research, vol.38, issue.2, pp.455-466, 2010.
DOI : 10.1093/nar/gkp909

S. K. Hong, New design platform for malonyl-CoA-acyl carrier protein transacylase, FEBS Letters, vol.40, issue.6, pp.1240-1244, 2010.
DOI : 10.1016/j.febslet.2010.02.038

L. Serre, E. C. Verbree, Z. Dauter, A. R. Stuitje, and Z. S. Derewenda, Malonyl-CoA:Acyl Carrier Protein Transacylase at 1.5-?? Resolution., Journal of Biological Chemistry, vol.270, issue.22, pp.12961-12964, 1995.
DOI : 10.1074/jbc.270.22.12961

B. Hafkin, N. Kaplan, and B. Murphy, Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities, Antimicrobial Agents and Chemotherapy, vol.60, issue.3, pp.1695-1701, 2015.
DOI : 10.1128/AAC.01741-15

C. J. Chen, Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage, PLoS ONE, vol.78, issue.9, p.63210, 2013.
DOI : 10.1371/journal.pone.0063210.s004

J. E. Cronan and J. Thomas, Chapter 17 Bacterial Fatty Acid Synthesis and its Relationships with Polyketide Synthetic Pathways, Methods Enzymol, vol.459, pp.395-433, 2009.
DOI : 10.1016/S0076-6879(09)04617-5

A. Masoudi, C. R. Raetz, P. Zhou, and C. W. Pemble, Chasing acyl carrier protein through a catalytic cycle of lipid A production, Nature, vol.162, issue.7483, pp.422-426, 2014.
DOI : 10.1038/nature12679

N. Kaplan, activity (MICs and rate of kill) of AFN-1252, a novel FabI inhibitor, in the presence of serum and in combination with other antibiotics, Journal of Chemotherapy, vol.25, issue.1, pp.18-25, 2013.
DOI : 10.1086/430352

J. H. Yum, In Vitro Activities of CG400549, a Novel FabI Inhibitor, against Recently Isolated Clinical Staphylococcal Strains in Korea, Antimicrobial Agents and Chemotherapy, vol.51, issue.7, pp.2591-2593, 2007.
DOI : 10.1128/AAC.01562-06

F. E. Ruch and P. R. Vagelos, The isolation and general properties of Escherichia coli malonyl coenzyme A-acyl carrier protein transacylase, J. Biol. Chem, vol.248, pp.8086-8094, 1973.

D. Albanesi, Structural Basis for Feed-Forward Transcriptional Regulation of Membrane Lipid Homeostasis in Staphylococcus aureus, PLoS Pathogens, vol.31, issue.1, p.1003108, 2013.
DOI : 10.1371/journal.ppat.1003108.s011

URL : https://hal.archives-ouvertes.fr/pasteur-00846686

G. E. Schujman, L. Paoletti, A. D. Grossman, and D. De-mendoza, FapR, a Bacterial Transcription Factor Involved in Global Regulation of Membrane Lipid Biosynthesis, Developmental Cell, vol.4, issue.5, pp.663-672, 2003.
DOI : 10.1016/S1534-5807(03)00123-0

T. Q. Do, Lipids Including Cholesteryl Linoleate and Cholesteryl Arachidonate Contribute to the Inherent Antibacterial Activity of Human Nasal Fluid, The Journal of Immunology, vol.181, issue.6, pp.4177-4187, 2008.
DOI : 10.4049/jimmunol.181.6.4177

Y. T. Lin, in a patient with septic arthritis during long-term treatment with daptomycin, Journal of Antimicrobial Chemotherapy, vol.71, issue.7, pp.1807-1814, 2016.
DOI : 10.1093/jac/dkw060

N. Kubota, First isolation of oleate-dependent Enterococcus faecalis small-colony variants from the umbilical exudate of a paediatric patient with omphalitis, Journal of Medical Microbiology, vol.62, issue.Pt_12, pp.1883-1890, 2013.
DOI : 10.1099/jmm.0.062752-0

N. Nicolaides, Skin Lipids: Their Biochemical Uniqueness, Science, vol.186, issue.4158, pp.19-26, 1974.
DOI : 10.1126/science.186.4158.19

L. C. Becker, Final Report of the Amended Safety Assessment of Myristic Acid and Its Salts and Esters as Used in Cosmetics, International Journal of Toxicology, vol.29, issue.4 Suppl, pp.162-186, 2010.
DOI : 10.1177/1091581810374127

J. R. Fitzgerald, Evolution of Staphylococcus aureus during human colonization and infection, Infection, Genetics and Evolution, vol.21, pp.542-547, 2014.
DOI : 10.1016/j.meegid.2013.04.020

S. Herbert, Repair of Global Regulators in Staphylococcus aureus 8325 and Comparative Analysis with Other Clinical Isolates, Infection and Immunity, vol.78, issue.6, pp.2877-2889, 2010.
DOI : 10.1128/IAI.00088-10

F. R. Blattner, The Complete Genome Sequence of Escherichia coli K-12, Science, vol.277, issue.5331, pp.1453-1462, 1997.
DOI : 10.1126/science.277.5331.1453

Y. Yamamoto, The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence, Molecular Microbiology, vol.147, issue.3, pp.772-785, 2006.
DOI : 10.1111/j.1365-2958.2005.04555.x

URL : https://hal.archives-ouvertes.fr/hal-00101541

D. G. Gibson, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nature Methods, vol.102, issue.5, pp.343-345, 2009.
DOI : 10.1038/nmeth.1318

M. F. Lartigue and P. Bouloc, A tetracycline-inducible expression vector for Streptococcus agalactiae allowing controllable gene expression, Journal of Microbiological Methods, vol.96, pp.16-18, 2014.
DOI : 10.1016/j.mimet.2013.10.020

G. R. Kraemer and J. J. Iandolo, High-frequency transformation ofStaphylococcus aureus by electroporation, Current Microbiology, vol.54, issue.6, pp.373-376
DOI : 10.1007/BF02199440

D. Post-beittenmiller, J. G. Jaworski, and J. B. Ohlrogge, In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis, J. Biol. Chem, vol.266, pp.1858-1865, 1991.

Y. M. Zhang and C. Rock, Membrane lipid homeostasis in bacteria, Nature Reviews Microbiology, vol.50, issue.3, pp.222-233, 2008.
DOI : 10.1038/nrmicro1839