K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., An updated evolutionary classification of CRISPR???Cas systems, Nature Reviews Microbiology, vol.41, issue.11, pp.722-736, 2015.
DOI : 10.1038/nrmicro3569

K. S. Makarova, D. H. Haft, R. Barrangou, S. J. Brouns, E. Charpentier et al., Evolution and classification of the CRISPR???Cas systems, Nature Reviews Microbiology, vol.35, issue.6, pp.467-477, 2011.
DOI : 10.1038/nrmicro2577

F. J. Mojica, C. Diez-villasenor, J. Garcia-martinez, and E. Soria, Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements, Journal of Molecular Evolution, vol.2, issue.2, pp.174-182, 2005.
DOI : 10.1007/s00239-004-0046-3

J. Van-der-oost, E. R. Westra, R. N. Jackson, and B. Wiedenheft, Unravelling the structural and mechanistic basis of CRISPR???Cas systems, Nature Reviews Microbiology, vol.41, issue.7, pp.479-492, 2014.
DOI : 10.1093/nar/gku120

R. Barrangou and L. A. Marraffini, CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity, Molecular Cell, vol.54, issue.2, pp.234-244, 2014.
DOI : 10.1016/j.molcel.2014.03.011

S. Al-attar, E. R. Westra, J. Van-der-oost, and S. J. Brouns, Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes, Biological Chemistry, vol.392, issue.4, pp.277-289, 2011.
DOI : 10.1515/bc.2011.042

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.232, issue.7571, pp.55-61, 2015.
DOI : 10.1038/nature15386

E. Charpentier, H. Richter, J. Van-der-oost, and M. F. White, Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity, FEMS Microbiology Reviews, vol.39, issue.3, pp.428-441, 2015.
DOI : 10.1093/femsre/fuv023

R. Sorek, V. Kunin, and P. Hugenholtz, CRISPR ??? a widespread system that provides acquired resistance against phages in bacteria and archaea, Nature Reviews Microbiology, vol.7, issue.3, pp.181-186, 2008.
DOI : 10.1038/nrmicro1793

Y. Ishino, H. Shinagawa, K. Makino, M. Amemura, and A. Nakata, Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product., Journal of Bacteriology, vol.169, issue.12, pp.5429-5433, 1987.
DOI : 10.1128/jb.169.12.5429-5433.1987

I. Yosef, M. G. Goren, and U. Qimron, Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Research, vol.40, issue.12, pp.5569-5576, 2012.
DOI : 10.1093/nar/gks216

R. Heler, P. Samai, J. W. Modell, C. Weiner, G. W. Goldberg et al., Cas9 specifies functional viral targets during CRISPR???Cas adaptation, Nature, vol.41, issue.7542, pp.199-202, 2015.
DOI : 10.1038/nature14245

Y. Wei, R. M. Terns, and M. P. Terns, Cas9 function and host genome sampling in Type II-A CRISPR???Cas adaptation, Genes & Development, vol.29, issue.4, pp.356-361, 2015.
DOI : 10.1101/gad.257550.114

A. Plagens, B. Tjaden, A. Hagemann, L. Randau, and R. Hensel, Characterization of the CRISPR/Cas Subtype I-A System of the Hyperthermophilic Crenarchaeon Thermoproteus tenax, Journal of Bacteriology, vol.194, issue.10, pp.2491-2500, 2012.
DOI : 10.1128/JB.00206-12

D. Vorontsova, K. A. Datsenko, S. Medvedeva, J. Bondy-denomy, E. E. Savitskaya et al., Foreign DNA acquisition by the I-F??CRISPR???Cas system requires all components of the interference machinery, Nucleic Acids Research, vol.43, issue.22, pp.10848-10860, 2015.
DOI : 10.1093/nar/gkv1261

G. Amitai and R. Sorek, CRISPR???Cas adaptation: insights into the mechanism of action, Nature Reviews Microbiology, vol.4, issue.2, pp.67-76, 2016.
DOI : 10.1038/nrmicro.2015.14

S. H. Sternberg, H. Richter, E. Charpentier, and U. Qimron, Adaptation in CRISPR-Cas Systems, Molecular Cell, vol.61, issue.6, pp.61-797, 2016.
DOI : 10.1016/j.molcel.2016.01.030

J. K. Nuñeznu?nuñez, A. S. Lee, A. Engelman, and J. A. Doudna, Integrase-mediated spacer acquisition during CRISPR???Cas adaptive immunity, Nature, vol.14, issue.7542, pp.193-198, 2015.
DOI : 10.1038/nature14237

J. K. Nuñeznu?nuñez, L. Bai, L. B. Harrington, T. L. Hinder, and J. A. Doudna, CRISPR Immunological Memory Requires a Host Factor for Specificity, Molecular Cell, vol.62, issue.6, pp.824-833, 2016.
DOI : 10.1016/j.molcel.2016.04.027

J. K. Nuñeznu?nuñez, L. B. Harrington, P. J. Kranzusch, A. N. Engelman, and J. A. Doudna, Foreign DNA capture during CRISPR???Cas adaptive immunity, Nature, vol.30, issue.7579, pp.535-538, 2015.
DOI : 10.1038/nature15760

Z. Arslan, V. Hermanns, R. Wurm, R. Wagner, and U. Pul, Detection and characterization of spacer integration intermediates in type I-E CRISPR???Cas system, Nucleic Acids Research, vol.42, issue.12, pp.7884-7893, 2014.
DOI : 10.1093/nar/gku510

Y. Wei, M. T. Chesne, R. M. Terns, and M. P. Terns, Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus, Nucleic Acids Research, vol.43, issue.3, pp.1749-1758, 2015.
DOI : 10.1093/nar/gku1407

M. Krupovic, K. S. Makarova, P. Forterre, D. Prangishvili, and E. V. Koonin, Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC Biology, vol.12, issue.1, p.36, 2014.
DOI : 10.1093/molbev/mst197

URL : https://hal.archives-ouvertes.fr/pasteur-01001796

K. S. Makarova, Y. I. Wolf, and E. V. Koonin, The basic building blocks and evolution of CRISPR???Cas systems, Biochemical Society Transactions, vol.41, issue.6, pp.1392-1400, 2013.
DOI : 10.1042/BST20130038

A. B. Hickman and F. Dyda, Mechanisms of DNA Transposition, Microbiology Spectrum, vol.3, issue.2, pp.3-0034, 2015.
DOI : 10.1128/microbiolspec.MDNA3-0034-2014

P. Siguier, E. Gourbeyre, A. Varani, B. Ton-hoang, and M. Chandler, Everyman's Guide to Bacterial Insertion Sequences, Microbiology Spectrum, vol.3, issue.2, pp.10-1128, 2015.
DOI : 10.1128/microbiolspec.MDNA3-0030-2014

J. Mahillon and M. Chandler, Insertion sequences, Microbiol. Mol. Biol. Rev, vol.62, pp.725-774, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00021179

E. V. Koonin and M. Krupovic, Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nature Reviews Genetics, vol.4, issue.3, pp.184-192, 2015.
DOI : 10.1038/nature13011

M. Krupovic and E. V. Koonin, Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems, Current Opinion in Microbiology, vol.31, pp.25-33, 2016.
DOI : 10.1016/j.mib.2016.01.006

A. B. Hickman and F. Dyda, is a DNA integrase that generates target site duplications, Nucleic Acids Research, vol.43, issue.22, pp.10576-10587, 2015.
DOI : 10.1093/nar/gkv1180

K. A. Datsenko, K. Pougach, A. Tikhonov, B. L. Wanner, K. Severinov et al., Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system, Nature Communications, vol.3, p.945, 2012.
DOI : 10.1073/pnas.120163297

M. Krupovic, S. Shmakov, K. S. Makarova, P. Forterre, and E. V. Koonin, Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity, Genome Biology and Evolution, vol.8, issue.2, pp.375-386, 2016.
DOI : 10.1093/gbe/evw006

URL : https://hal.archives-ouvertes.fr/hal-01443928

H. Munier, A. M. Gilles, P. Glaser, E. Krin, A. Danchin et al., Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase, European Journal of Biochemistry, vol.215, issue.2, pp.469-474, 1991.
DOI : 10.1016/0968-0004(90)90177-D

URL : https://hal.archives-ouvertes.fr/pasteur-00167100

D. Marchuk, M. Drumm, A. Saulino, and F. S. Collins, Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products, Nucleic Acids Research, vol.19, issue.5, p.1154, 1991.
DOI : 10.1093/nar/19.5.1154

N. D. Grindley, K. L. Whiteson, and P. A. Rice, Mechanisms of Site-Specific Recombination, Annual Review of Biochemistry, vol.75, issue.1, pp.567-605, 2006.
DOI : 10.1146/annurev.biochem.73.011303.073908

P. A. Rice, Resolving integral questions in site-specific recombination, Nature Structural & Molecular Biology, vol.13, issue.8, pp.641-643, 2005.
DOI : 10.1016/j.jmb.2004.05.027

M. Babu, N. Beloglazova, R. Flick, C. Graham, T. Skarina et al., A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair, Molecular Microbiology, vol.9, issue.2, pp.484-502, 2011.
DOI : 10.1111/j.1365-2958.2010.07465.x

B. Wiedenheft, K. Zhou, M. Jinek, S. M. Coyle, W. Ma et al., Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense, Structure, vol.17, issue.6, pp.904-912, 2009.
DOI : 10.1016/j.str.2009.03.019

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.
DOI : 10.1093/nar/gkg595

P. C. Fineran and E. Charpentier, Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information, Virology, vol.434, issue.2, pp.202-209, 2012.
DOI : 10.1016/j.virol.2012.10.003

F. J. Mojica, C. Diez-villaseñorvillase?villaseñor, J. Garcia-martinez, and C. Almendros, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, vol.155, pp.733-740, 2009.

J. K. Nuñeznu?nuñez, P. J. Kranzusch, J. Noeske, A. V. Wright, C. W. Davies et al., Cas1???Cas2 complex formation mediates spacer acquisition during CRISPR???Cas adaptive immunity, Nature Structural & Molecular Biology, vol.25, issue.6, pp.528-534, 2014.
DOI : 10.1038/nsmb.2820

J. Wang, J. Li, H. Zhao, G. Sheng, M. Wang et al., Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems, Cell, vol.163, issue.4, pp.840-853, 2015.
DOI : 10.1016/j.cell.2015.10.008

P. Schattner, A. N. Brooks, and T. M. Lowe, The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs, Nucleic Acids Research, vol.33, issue.Web Server, pp.686-689, 2005.
DOI : 10.1093/nar/gki366