I. L. Ch-'en, J. S. Tsau, J. D. Molkentin, M. Komatsu, and S. M. Hedrick, Mechanisms of necroptosis in T cells, J. Exp. Med, vol.208, pp.633-641, 2011.

Y. S. Cho, S. Challa, D. Moquin, R. Genga, T. D. Ray et al., Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation, Cell, vol.137, issue.6, pp.1112-1123, 2009.
DOI : 10.1016/j.cell.2009.05.037

C. P. Dillon, A. Oberst, R. Weinlich, L. J. Janke, T. B. Kang et al., Survival Function of the FADD-CASPASE-8-cFLIPL Complex, Cell Reports, vol.1, issue.5, pp.401-407, 2012.
DOI : 10.1016/j.celrep.2012.03.010

N. Festjens, M. Kalai, J. Smet, A. Meeus, R. Van-coster et al., Butylated hydroxyanisole is more than a reactive oxygen species scavenger, Cell Death and Differentiation, vol.268, issue.1, pp.166-169, 2006.
DOI : 10.1111/j.1432-1033.1991.tb15727.x

S. He, L. Wang, L. Miao, T. Wang, F. Du et al., Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-??, Cell, vol.137, issue.6, pp.1100-1111, 2009.
DOI : 10.1016/j.cell.2009.05.021

S. He, Y. Liang, F. Shao, W. , and X. , Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway, Proc. Natl. Acad. Sci. USA, 2011.
DOI : 10.1073/pnas.1116302108

M. D. Jacobson, J. F. Burne, M. P. King, T. Miyashita, J. C. Reed et al., Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA, Nature, vol.361, issue.6410, pp.365-369, 1993.
DOI : 10.1038/361365a0

M. D. Jacobson, J. F. Burne, and M. C. Raff, Programmed cell death and Bcl-2 protection in the absence of a nucleus, EMBO J, vol.13, pp.1899-1910, 1994.

P. J. Jost, S. Grabow, D. Gray, M. D. Mckenzie, U. Nachbur et al., XIAP discriminates between type I and type II FAS-induced apoptosis, Nature, vol.139, issue.7258, pp.1035-1039, 2009.
DOI : 10.1038/nature08229

Y. S. Kim, M. J. Morgan, S. Choksi, and Z. G. Liu, TNF-Induced Activation of the Nox1 NADPH Oxidase and Its Role in the Induction of Necrotic Cell Death, Molecular Cell, vol.26, issue.5, pp.675-687, 2007.
DOI : 10.1016/j.molcel.2007.04.021

J. Y. Lee, Y. Nagano, J. P. Taylor, K. L. Lim, and T. P. Yao, Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy, The Journal of Cell Biology, vol.189, issue.4, pp.671-679, 2010.
DOI : 10.1073/pnas.240347797

Y. Lin, S. Choksi, H. M. Shen, Q. F. Yang, G. M. Hur et al., Tumor Necrosis Factor-induced Nonapoptotic Cell Death Requires Receptor-interacting Protein-mediated Cellular Reactive Oxygen Species Accumulation, Journal of Biological Chemistry, vol.279, issue.11, pp.10822-10828, 2004.
DOI : 10.1074/jbc.M313141200

A. Linkermann, J. H. Brä-sen, N. Himmerkus, S. Liu, T. B. Huber et al., Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury, Kidney International, vol.81, issue.8, pp.751-761, 2012.
DOI : 10.1038/ki.2011.450

I. Marzo, C. Brenner, N. Zamzami, S. A. Susin, G. Beutner et al., The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2???related Proteins, The Journal of Experimental Medicine, vol.155, issue.8, pp.1261-1271, 1998.
DOI : 10.1016/0092-8674(95)90422-0

M. Muzio, B. R. Stockwell, H. R. Stennicke, G. S. Salvesen, and V. M. Dixit, An Induced Proximity Model for Caspase-8 Activation, Journal of Biological Chemistry, vol.273, issue.5, pp.2926-2930, 1998.
DOI : 10.1074/jbc.273.5.2926

H. Nakayama, X. Chen, C. P. Baines, R. Klevitsky, X. Zhang et al., Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure, Journal of Clinical Investigation, vol.117, issue.9, pp.2431-2444, 2007.
DOI : 10.1172/JCI31060

D. Narendra, A. Tanaka, D. F. Suen, Y. , and R. J. , Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, The Journal of Cell Biology, vol.84, issue.5, pp.795-803, 2008.
DOI : 10.1073/pnas.0711845105

D. Narendra, L. A. Kane, D. N. Hauser, I. M. Fearnley, Y. et al., p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, vol.15, issue.8, pp.1090-1106, 2010.
DOI : 10.1038/75406

A. Oberst, C. Pop, A. G. Tremblay, V. Blais, J. B. Denault et al., Inducible Dimerization and Inducible Cleavage Reveal a Requirement for Both Processes in Caspase-8 Activation, Journal of Biological Chemistry, vol.285, issue.22, pp.16632-16642, 2010.
DOI : 10.1074/jbc.M109.095083

A. Oberst, C. P. Dillon, R. Weinlich, L. L. Mccormick, P. Fitzgerald et al., Catalytic activity of the caspase-8???FLIPL complex inhibits RIPK3-dependent necrosis, Nature, vol.24, issue.7338, pp.363-367, 2011.
DOI : 10.1038/nature09852

D. M. Rosenbaum, A. Degterev, J. David, P. S. Rosenbaum, S. Roth et al., Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model, Journal of Neuroscience Research, vol.103, pp.1569-1576, 2010.
DOI : 10.1002/jnr.22314

K. Schulze-osthoff, H. Walczak, W. Drö-ge, and P. H. Krammer, Cell nucleus and DNA fragmentation are not required for apoptosis, The Journal of Cell Biology, vol.127, issue.1, pp.15-20, 1994.
DOI : 10.1083/jcb.127.1.15

L. Sun, H. Wang, Z. Wang, S. He, S. Chen et al., Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase, Cell, vol.148, issue.1-2, pp.213-227, 2012.
DOI : 10.1016/j.cell.2011.11.031

S. W. Tait, M. J. Parsons, F. Llambi, L. Bouchier-hayes, S. Connell et al., Resistance to Caspase-Independent Cell Death Requires Persistence of Intact Mitochondria, Developmental Cell, vol.18, issue.5, pp.802-813, 2010.
DOI : 10.1016/j.devcel.2010.03.014

T. Vanden-berghe, N. Vanlangenakker, E. Parthoens, W. Deckers, M. Devos et al., Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features, Cell Death and Differentiation, vol.267, issue.6, pp.922-930, 2010.
DOI : 10.1038/ncb1024

N. Vanlangenakker, T. Vanden-berghe, P. Bogaert, B. Laukens, K. Zobel et al., cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production, Cell Death and Differentiation, vol.18, issue.4, pp.656-665, 2011.
DOI : 10.1038/cdd.2010.138

URL : https://hal.archives-ouvertes.fr/hal-00590748

Z. Wang, H. Jiang, S. Chen, F. Du, W. et al., The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways, Cell, vol.148, issue.1-2, pp.228-243, 2012.
DOI : 10.1016/j.cell.2011.11.030

J. Wu, Z. Huang, J. Ren, Z. Zhang, P. He et al., Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis, Cell Research, vol.141, issue.8, pp.994-1006, 2013.
DOI : 10.1038/nrm906

D. W. Zhang, J. Shao, J. Lin, N. Zhang, B. J. Lu et al., RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis, Science, vol.325, issue.5938, pp.332-336, 2009.
DOI : 10.1126/science.1172308