M. Hickman, G. Zeng, A. Forche, M. Hirakawa, D. Abbey et al., The ???obligate diploid??? Candida albicans forms mating-competent haploids, Nature, vol.32, issue.7435, pp.55-59, 2013.
DOI : 10.1038/nature11865

T. Jones, N. Federspiel, H. Chibana, J. Dungan, S. Kalman et al., The diploid genome sequence of Candida albicans, Proceedings of the National Academy of Sciences, vol.101, issue.19, pp.7329-7334, 2004.
DOI : 10.1073/pnas.0401648101

W. Whelan and P. Magee, Natural heterozygosity in Candida albicans, J Bacteriol, vol.145, pp.896-903, 1981.

D. Diogo, C. Bouchier, C. Enfert, and M. Bougnoux, Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans, Fungal Genetics and Biology, vol.46, issue.2, pp.159-168, 2009.
DOI : 10.1016/j.fgb.2008.11.005

A. Forche, P. Magee, A. Selmecki, J. Berman, and M. G. , Evolution in Candida albicans populations during a single passage through a mouse h o s t . G e n e t i c, 2009.

A. Selmecki, K. Dulmage, L. Cowen, J. Anderson, and J. Berman, Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance, PLoS Genetics, vol.179, issue.2, 2009.
DOI : 10.1371/journal.pgen.1000705.s009

J. Hill, R. Ammar, D. Torti, C. Nislow, and L. Cowen, Genetic and Genomic Architecture of the Evolution of Resistance to Antifungal Drug Combinations, PLoS Genetics, vol.10, issue.4, 2013.
DOI : 10.1371/journal.pgen.1003390.s011

C. Ford, J. Funt, D. Abbey, L. Issi, C. Guiducci et al., The evolution of drug resistance in clinical isolates of Candida albicans, Elife, vol.4, 2015.

A. Coste, A. Selmecki, A. Forche, D. Diogo, M. Bougnoux et al., Genotypic Evolution of Azole Resistance Mechanisms in Sequential Candida albicans Isolates, Eukaryotic Cell, vol.6, issue.10, pp.1889-190400151, 2007.
DOI : 10.1128/EC.00151-07

A. Selmecki, A. Forche, and J. Berman, Aneuploidy and Isochromosome Formation in Drug-Resistant Candida albicans, Science, vol.313, issue.5785, pp.367-370, 2006.
DOI : 10.1126/science.1128242

N. Dunkel, J. Blass, P. Rogers, and J. Morschhäuser, strains, Molecular Microbiology, vol.66, issue.4, pp.827-840, 2008.
DOI : 10.1111/j.1365-2958.2008.06309.x

N. Dunkel, T. Liu, K. Barker, R. Homayouni, J. Morschhäuser et al., A Gain-of-Function Mutation in the Transcription Factor Upc2p Causes Upregulation of Ergosterol Biosynthesis Genes and Increased Fluconazole Resistance in a Clinical Candida albicans Isolate, Eukaryotic Cell, vol.7, issue.7, pp.1180-1190, 2008.
DOI : 10.1128/EC.00103-08

K. Niimi, B. Monk, A. Hirai, K. Hatakenaka, T. Umeyama et al., Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity, Journal of Antimicrobial Chemotherapy, vol.65, issue.5, pp.842-852, 2010.
DOI : 10.1093/jac/dkq073

D. Muzzey, K. Schwartz, J. Weissman, and G. Sherlock, Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure, Genome Biology, vol.14, issue.9, 2013.
DOI : 10.1101/gad.7.9.1737

D. Muzzey, G. Sherlock, and J. Weissman, Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans, Genome Research, vol.24, issue.6, pp.963-973, 2014.
DOI : 10.1101/gr.166322.113

J. Gomez-raja, E. Andaluz, B. Magee, R. Calderone, and G. Larriba, A single SNP, G929T (Gly310Val), determines the presence of a functional and a non-functional allele of HIS4 in Candida albicans SC5314: Detection of the non-functional allele in laboratory strains, Fungal Genetics and Biology, vol.45, issue.4, pp.527-541, 2008.
DOI : 10.1016/j.fgb.2007.08.008

T. Ciudad, M. Hickman, A. Bellido, J. Berman, and G. Larriba, Phenotypic Consequences of a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of Candida albicans, Genetics, vol.203, issue.3, pp.1161-1176, 2016.
DOI : 10.1534/genetics.116.189274

B. Magee and P. Magee, Induction of Mating in Candida albicans by Construction of MTLa and MTLalpha Strains, Science, vol.289, issue.5477, pp.310-313, 2000.
DOI : 10.1126/science.289.5477.310

M. Miller and A. Johnson, White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating, Cell, vol.110, issue.3, pp.293-302, 2002.
DOI : 10.1016/S0092-8674(02)00837-1

S. Lockhart, C. Pujol, K. Daniels, M. Miller, A. Johnson et al., In Candida albicans, white-opaque switchers are homozygous for mating type, Genetics, vol.162, pp.737-745, 2002.

G. Janbon, F. Sherman, and E. Rustchenko, Monosomy of a specific chromosome determines L-sorbose utilization: A novel regulatory mechanism in Candida albicans, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.5150-5155, 1998.
DOI : 10.1073/pnas.95.9.5150

A. Selmecki, A. Forche, and J. Berman, Genomic Plasticity of the Human Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.9, issue.7, pp.991-100800060, 2010.
DOI : 10.1128/EC.00060-10

A. Forche, K. Alby, D. Schaefer, A. Johnson, J. Berman et al., The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains, PLoS Biology, vol.169, issue.5, p.110, 2008.
DOI : 10.1371/journal.pbio.0060110.st006

R. Bennett and A. Johnson, Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains, The EMBO Journal, vol.22, issue.10, 2003.
DOI : 10.1093/emboj/cdg235

E. Andaluz, A. Bellido, J. Gómez-raja, A. Selmecki, K. Bouchonville et al., Rad52 function prevents chromosome loss and truncation in Candida albicans, Molecular Microbiology, vol.103, issue.6, pp.1462-1482, 2011.
DOI : 10.1111/j.1365-2958.2011.07532.x

R. Loll-krippleber, A. Feri, M. Nguyen, C. Maufrais, J. Yansouni et al., A FACS-Optimized Screen Identifies Regulators of Genome Stability in Candida albicans, Eukaryotic Cell, vol.14, issue.3, pp.311-32200286, 2015.
DOI : 10.1128/EC.00286-14

M. Chiurazzi, A. Ray, J. Viret, R. Perera, X. Wang et al., Enhancement of Somatic Intrachromosomal Homologous Recombination in Arabidopsis by the HO Endonuclease, THE PLANT CELL ONLINE, vol.8, issue.11, pp.2057-2066, 1996.
DOI : 10.1105/tpc.8.11.2057

A. Malkova, F. Klein, W. Leung, and J. Haber, HO endonucleaseinduced recombination in yeast meiosis resembles Spo11-induced events, 2000.

D. Brenner and J. Ward, Constraints on Energy Deposition and Target Size of Multiply Damaged Sites Associated with DNA Double-strand Breaks, International Journal of Radiation Biology, vol.95, issue.6, pp.737-748, 1992.
DOI : 10.1080/09553009214551591

A. Koç, L. Wheeler, C. Mathews, and G. Merrill, Hydroxyurea Arrests DNA Replication by a Mechanism That Preserves Basal dNTP Pools, Journal of Biological Chemistry, vol.279, issue.1, pp.223-230, 2004.
DOI : 10.1074/jbc.M303952200

T. Schwartz and E. Kmiec, Using methyl methanesulfonate (MMS) to stimulate targeted gene repair activity in mammalian cells, Gene Ther Mol Biol, vol.9, pp.193-202, 2005.

T. Ciudad, E. Andaluz, O. Steinberg-neifach, N. Lue, N. Gow et al., Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length, Molecular Microbiology, vol.388, issue.4, pp.1177-1194, 2004.
DOI : 10.1111/j.1365-2958.2004.04197.x

F. García-prieto, J. Gómez-raja, E. Andaluz, R. Calderone, and G. Larriba, Role of the homologous recombination genes RAD51 and RAD59 in the resistance of Candida albicans to UV light, radiomimetic and anti-tumor compounds and oxidizing agents, Fungal Genetics and Biology, vol.47, issue.5, pp.433-445, 2010.
DOI : 10.1016/j.fgb.2010.02.007

M. Legrand, C. Chan, P. Jauert, and D. Kirkpatrick, Role of DNA Mismatch Repair and Double-Strand Break Repair in Genome Stability and Antifungal Drug Resistance in Candida albicans, Eukaryotic Cell, vol.6, issue.12, pp.2194-220500299, 2007.
DOI : 10.1128/EC.00299-07

M. Legrand, C. Chan, P. Jauert, and D. Kirkpatrick, Analysis of base excision and nucleotide excision repair in Candida albicans, Microbiology, vol.154, issue.8, pp.2446-2456017616, 2008.
DOI : 10.1099/mic.0.2008/017616-0

A. Sarachek, L. Henderson, and K. Eddy, Genetic destabilization of Candida albicans by hydroxyurea, Microbios, vol.65, pp.39-61, 1991.

A. Forche, D. Abbey, T. Pisithkul, M. Weinzierl, T. Ringstrom et al., Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans, mBio, vol.2, issue.4, pp.129-1100129, 2011.
DOI : 10.1128/mBio.00129-11

W. Whelan and D. Markie, UV-induced instability in Candida albicans hybrids, Current Genetics, vol.180, issue.2, pp.175-177, 1985.
DOI : 10.1007/BF00436967

M. Aubert, B. Ryu, L. Banks, D. Rawlings, A. Scharenberg et al., Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI, PLoS ONE, vol.67, issue.2, 2011.
DOI : 10.1371/journal.pone.0016825.g009

Y. Bellaiche, V. Mogila, and N. Perrimon, I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila, Genetics, vol.152, pp.1037-1044, 1999.

E. Berkovich, R. Monnat, and M. Kastan, Assessment of protein dynamics and DNA repair following generation of DNA double-strand breaks at defined genomic sites, Nature Protocols, vol.13, issue.5, pp.915-922, 2008.
DOI : 10.1038/nprot.2008.54

R. Johnson and M. Jasin, Double-strand-break-induced homologous recombination in mammalian cells, Biochemical Society Transactions, vol.29, issue.2, pp.196-201, 2001.
DOI : 10.1042/bst0290196

L. Lyznik, V. Djukanovic, M. Yang, and S. Jones, Double-Strand Break-Induced Targeted Mutagenesis in Plants, Methods Mol Biol, vol.847, pp.399-416978, 2012.
DOI : 10.1007/978-1-61779-558-9_32

N. Muñoz, B. Beard, B. Ryu, R. Luche, G. Trobridge et al., Novel reporter systems for facile evaluation of I-SceI-mediated genome editing, Nucleic Acids Research, vol.40, issue.2, 2012.
DOI : 10.1093/nar/gkr897

D. Rempe, G. Vangeison, J. Hamilton, Y. Li, M. Jepson et al., Synapsin I Cre transgene expression in male mice produces germline recombination in progeny, genesis, vol.31, issue.1, pp.44-49, 2006.
DOI : 10.1002/gene.20183

N. Windbichler, M. Menichelli, P. Papathanos, S. Thyme, H. Li et al., A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, vol.41, issue.7346, pp.212-215, 2011.
DOI : 10.1038/nature09937

A. Jacquier and B. Dujon, An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene, Cell, vol.41, issue.2, pp.383-394, 1985.
DOI : 10.1016/S0092-8674(85)80011-8

C. Monteilhet, A. Perrin, A. Thierry, L. Colleaux, and B. Dujon, I, a novel and highly specific endonuclease encoded by a group I intron, Nucleic Acids Research, vol.18, issue.6, pp.1407-1413, 1990.
DOI : 10.1093/nar/18.6.1407

R. Loll-krippleber, C. Enfert, A. Feri, D. Diogo, A. Perin et al., : uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth, Molecular Microbiology, vol.408, issue.Suppl. 2, pp.452-471, 2014.
DOI : 10.1111/mmi.12471

A. Forche, M. Steinbach, and J. Berman, allelic status using SNP-RFLP, FEMS Yeast Research, vol.9, issue.7, pp.1061-1069, 2009.
DOI : 10.1111/j.1567-1364.2009.00542.x

D. Kalderon, W. Richardson, A. Markham, and A. Smith, Sequence requirements for nuclear location of simian virus 40 large-T antigen, Nature, vol.292, issue.5981, pp.33-38, 1984.
DOI : 10.1038/311033a0

P. Collas and P. Aleström, Nuclear localization signals enhance germline Feri et al. transmission of a transgene in zebrafish, Transgenic Research, vol.7, issue.4, pp.303-309, 1998.
DOI : 10.1023/A:1008826230315

Y. Wang, X. Zhou, P. Xiang, L. Wang, H. Tang et al., The Meganuclease I-SceI Containing Nuclear Localization Signal (NLS-I-SceI) Efficiently Mediated Mammalian Germline Transgenesis via Embryo Cytoplasmic Microinjection, PLoS ONE, vol.80, issue.9, 2014.
DOI : 10.1371/journal.pone.0108347.s006

M. Chauvel, A. Nesseir, V. Cabral, S. Znaidi, S. Goyard et al., A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness, PLoS ONE, vol.7, issue.9, p.45912, 2012.
DOI : 10.1371/journal.pone.0045912.s005

W. Fonzi and M. Irwin, Isogenic strain construction and gene mapping in Candida albicans, Genetics, vol.134, pp.717-728, 1993.

C. Nobile and A. Mitchell, Large-Scale Gene Disruption Using the UAU1 Cassette, Methods Mol Biol, vol.499, pp.175-194978, 2009.
DOI : 10.1007/978-1-60327-151-6_17

J. Towpik, A. Chaciñska, M. Ciesla, K. Ginalski, and M. Boguta, Mutations in the Yeast MRF1 Gene Encoding Mitochondrial Release Factor Inhibit Translation on Mitochondrial Ribosomes, Journal of Biological Chemistry, vol.279, issue.14, pp.14096-14103, 2004.
DOI : 10.1074/jbc.M312856200

M. Askarian-amiri, H. Pel, D. Guévremont, K. Mccaughan, E. Poole et al., Functional Characterization of Yeast Mitochondrial Release Factor 1, Journal of Biological Chemistry, vol.275, issue.23, pp.17241-17248, 2000.
DOI : 10.1074/jbc.M910448199

H. Pel, S. Rozenfeld, and M. Bolotin-fukuhara, The nuclear Kluyveromyces lactis MRF1 gene encodes a mitochondrial class I peptide chain release factor that is important for cell viability, Current Genetics, vol.30, issue.1, pp.19-28, 1996.
DOI : 10.1007/s002940050095

M. Karababa, A. Coste, B. Rognon, J. Bille, and D. Sanglard, Comparison of Gene Expression Profiles of Candida albicans Azole-Resistant Clinical Isolates and Laboratory Strains Exposed to Drugs Inducing Multidrug Transporters, Antimicrobial Agents and Chemotherapy, vol.48, issue.8, pp.3064-3079, 2004.
DOI : 10.1128/AAC.48.8.3064-3079.2004

J. Greenberg, N. Price, R. Oliver, F. Sherman, and E. Rustchenko, Candida albicans SOU1 encodes a sorbose reductase required forL-sorbose utilization, Yeast, vol.182, issue.12, pp.957-969, 2005.
DOI : 10.1002/yea.1282

M. Kabir, A. Ahmad, J. Greenberg, Y. Wang, and E. Rustchenko, Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators, Proceedings of the National Academy of Sciences, vol.102, issue.34, pp.12147-12152, 2005.
DOI : 10.1073/pnas.0505625102

T. Lebeaupin, H. Sellou, G. Timinszky, and S. Huet, Chromatin dynamics at DNA breaks: what, how and why?, AIMS Biophysics, vol.2, issue.4, pp.458-475, 2015.
DOI : 10.3934/biophy.2015.4.458

C. Lemaître, A. Grabarz, K. Tsouroula, L. Andronov, A. Furst et al., Nuclear position dictates DNA repair pathway choice, Genes & Development, vol.28, issue.22, pp.2450-2463, 2014.
DOI : 10.1101/gad.248369.114

E. Andaluz, R. Calderone, G. Reyes, and G. Larriba, Phenotypic Analysis and Virulence of Candida albicans LIG4 Mutants, Infection and Immunity, vol.69, issue.1, pp.137-147, 2001.
DOI : 10.1128/IAI.69.01.137-147.2001

A. Hartlerode, S. Odate, I. Shim, J. Brown, and R. Scully, Cell cycledependent induction of homologous recombination by a tightly regulated I-SceI fusion protein, PLoS One, vol.6, 2011.

N. Saleh-gohari and T. Helleday, Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells, Nucleic Acids Research, vol.32, issue.12, pp.3683-3688, 2004.
DOI : 10.1093/nar/gkh703

D. Wei and Y. Rong, A Genetic Screen For DNA Double-Strand Break Repair Mutations in Drosophila, Genetics, vol.177, issue.1, pp.63-77, 2007.
DOI : 10.1534/genetics.107.077693

G. Vu, H. Cao, K. Watanabe, G. Hensel, F. Blattner et al., Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid, The Plant Cell, vol.26, issue.5, pp.2156-2167, 2014.
DOI : 10.1105/tpc.114.126607

M. Esposito, R. Ramirez, and C. Bruschi, Nonrandomly-associated forward mutation and mitotic recombination yield yeast diploids homozygous for recessive mutations, Current Genetics, vol.22, issue.4, pp.302-307, 1994.
DOI : 10.1007/BF00310493

J. Haber and M. Hearn, Rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosomal loss, Genetics, vol.111, pp.7-22, 1985.

C. Ho, G. Mazón, A. Lam, and L. Symington, Mus81 and Yen1 Promote Reciprocal Exchange during Mitotic Recombination to Maintain Genome Integrity in Budding Yeast, Molecular Cell, vol.40, issue.6, pp.988-1000, 2010.
DOI : 10.1016/j.molcel.2010.11.016

A. Smith, R. Takeuchi, S. Pellenz, L. Davis, N. Maizels et al., Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease, Proceedings of the National Academy of Sciences, vol.106, issue.13, pp.5099-5104, 2009.
DOI : 10.1073/pnas.0810588106

C. Wiese, A. Pierce, S. Gauny, M. Jasin, and A. Kronenberg, Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L), Cancer Res, vol.62, pp.1279-1283, 2002.

V. Vyas, M. Barrasa, and G. Fink, A CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248, 2015.

C. Pujol, J. Reynes, F. Renaud, R. M. Tibayrenc, M. Ayala et al., The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients., Proceedings of the National Academy of Sciences, vol.90, issue.20, pp.9456-9459, 1993.
DOI : 10.1073/pnas.90.20.9456

J. Anderson, C. Wickens, M. Khan, L. Cowen, N. Federspiel et al., Infrequent Genetic Exchange and Recombination in the Mitochondrial Genome of Candida albicans, Journal of Bacteriology, vol.183, issue.3, pp.865-872, 2001.
DOI : 10.1128/JB.183.3.865-872.2001

Y. Gräser, M. Volovsek, J. Arrington, G. Schönian, W. Presber et al., Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination., Proceedings of the National Academy of Sciences, vol.93, issue.22, pp.12473-12477, 1996.
DOI : 10.1073/pnas.93.22.12473

S. Lockhart, J. Fritch, A. Meier, K. Schröppel, T. Srikantha et al., Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA-fingerprinting and C1 sequencing, J Clin Microbiol, vol.33, pp.1501-1509, 1995.

A. Mata, R. Rosa, E. Rosa, R. Gonçalves, and J. Höfling, Clonal variability among oral Candida albicans assessed by allozyme electrophoresis analysis, Oral Microbiology and Immunology, vol.265, issue.6, pp.350-354, 2000.
DOI : 10.1016/0378-1097(96)00070-5

C. Birky and J. , Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes, Genetics, vol.144, pp.427-437, 1996.

S. Noble and A. Johnson, Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.4, issue.2, pp.298-309, 2005.
DOI : 10.1128/EC.4.2.298-309.2005

S. Gola, R. Martin, A. Walther, A. Dünkler, and J. Wendland, : rapid and efficient gene targeting using 100 bp of flanking homology region, Yeast, vol.181, issue.16, pp.1339-1347, 2003.
DOI : 10.1002/yea.1044

Y. Park and J. Morschhäuser, Tetracycline-Inducible Gene Expression and Gene Deletion in Candida albicans, Eukaryotic Cell, vol.4, issue.8, pp.1328-1342, 2005.
DOI : 10.1128/EC.4.8.1328-1342.2005

E. Andaluz, J. Gómez-raja, B. Hermosa, T. Ciudad, E. Rustchenko et al., Loss and fragmentation of chromosome 5 are major events linked to the adaptation of rad52-???? strains of Candida albicans to sorbose, Fungal Genetics and Biology, vol.44, issue.8, pp.789-798, 2007.
DOI : 10.1016/j.fgb.2007.01.005

G. Janbon, F. Sherman, and E. Rustchenko, Appearance and properties of L-sorbose-utilizing mutants of Candida albicans obtained on a selective plate, Genetics, vol.153, pp.653-664, 1999.

M. Legrand, P. Lephart, A. Forche, F. Mueller, T. Walsh et al., Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation???, Molecular Microbiology, vol.8, issue.5, 2004.
DOI : 10.1111/j.1365-2958.2004.04068.x

J. Binkley, M. Arnaud, D. Inglis, M. Skrzypek, P. Shah et al., Genome Database: The new homology information page highlights protein similarity and phylogeny, Nucleic Acids Research, vol.42, issue.D1, pp.711-716, 2014.
DOI : 10.1093/nar/gkt1046

M. Van-het-hoog, T. Rast, M. Martchenko, S. Grindle, D. Dignard et al., Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes, Genome Biology, vol.8, issue.4, 2007.
DOI : 10.1186/gb-2007-8-4-r52

H. Li, R. Durbin, A. Mckenna, M. Hanna, E. Banks et al., Fast and accurate short read alignment with Burrows-Wheeler transform The genome analysis toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data, Bioinformatics Genome Res, vol.25, issue.20, pp.1754-17601297, 2009.

D. Abbey, J. Funt, M. Lurie-weinberger, D. Thompson, A. Regev et al., YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens, Genome Medicine, vol.33, issue.11, 2014.
DOI : 10.1186/s13073-014-0100-8