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Shaping mycolactone for therapeutic use against inflammatory disorders 

 

One-sentence summary: A synthetic surrogate of the mycobacterial macrolide mycolactone 

shows therapeutic potential against skin inflammation and inflammatory pain. 
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Abstract 

 

Inflammation adversely affects the health of millions of people worldwide and there is an unmet 

medical need for better anti-inflammatory drugs. Here, we evaluated the therapeutic interest of 

mycolactone, a polyketide-derived macrolide produced by Mycobacterium ulcerans. Bacterial 

production of mycolactone in human skin causes a combination of ulcerative, analgesic and anti-

inflammatory effects. While ulcer formation is mediated by the pro-apoptotic activity of 

mycolactone on skin cells via hyper-activation of Wiskott-Aldrich Syndrome proteins, analgesia 

results from neuronal hyper-polarization via signaling through angiotensin II type 2 receptors. 

Mycolactone also blunts the capacity of immune cells to produce inflammatory mediators, by an 

independent mechanism of protein synthesis blockade. In an attempt to isolate the structural 

determinants of mycolactone’s immunosuppressive activity, we screened a library of synthetic 

subunits of mycolactone for inhibition of cytokine production by activated T cells. The minimal 

structure retaining immunosuppressive activity was a truncated version of mycolactone, missing 

one of the two core-branched polyketide chains. This compound inhibited the inflammatory 

cytokine responses of human primary cells at non-cytotoxic doses, and bound to angiotensin II 

type 2 receptors comparably to mycolactone in vitro. Notably, it was considerably less toxic than 

mycolactone in human primary dermal fibroblasts modeling ulcerative activity. In mouse models 

of human diseases, it conferred systemic protection against chronic skin inflammation and 

inflammatory pain, with no apparent side effects. In addition to establishing the anti-

inflammatory potency of mycolactone in vivo, our study therefore highlights the translational 

potential of mycolactone core-derived structures as prospective immunosuppressants. 

 



INTRODUCTION 

 

Whether mycolactone, the major virulence factor of Mycobacterium ulcerans, impacts the 

systemic generation of inflammatory mediators in infected hosts remains unclear (1-3). 

Mycolactone production by bacteria infecting the skin provokes focal lesions called Buruli ulcers 

(BU) that are marked by an association of tissue necrosis, local analgesia and defective 

inflammation (4). We reported previously that mycolactone-driven destruction of cutaneous 

tissues proceeds through hyper-activation of N-WASP, a protein controlling the junctional 

organization and coordinated migration of epidermal cells (5). Recently, mycolactone was shown 

to inhibit pain perception by binding to angiotensin II type 2 receptors (AT2Rs) on neurons, 

leading to potassium-dependent hyperpolarization (6).  

 

In addition to a lack of inflammatory infiltrates at the level of skin lesions (7), patients with 

BU display systemic alterations in their cellular immune responses, evidenced by an impaired 

capacity of T cells to produce cytokines ex-vivo upon stimulation with mitogenic agents (8-10). 

Contrary to wild-type strains, mycolactone-deficient mutants of M. ulcerans do not impair the 

capacity of T cells to produce interleukin (IL)-2 in animal models, showing that mycolactone is 

the cause of these cellular response defects (11). In vitro, nanomolar concentrations of 

mycolactone efficiently blocked the functional maturation of dendritic cells (12) and cytokine 

production by activated lymphocytes, monocytes, macrophages and epithelial cell lines (13-17). 

Mycolactone also down-regulated the expression of L-selectin on naive T cells, profoundly 

impacting on lymphocyte homing and expansion upon antigenic stimulation in vivo (18). 

Although the molecular receptor mediating these effects remains to be identified, there is recent 



evidence showing that mycolactone operates by an original mechanism of post-transcriptional 

blockade of protein synthesis, selectively affecting membrane and secreted proteins (17).  

 

Following release by bacterial infection of the skin, or upon subcutaneous injection, 

mycolactone diffuses into the peripheral blood and reaches lymphoid organs (11, 19). This 

diffusion capacity, combined with potent immunosuppressive and analgesic properties, make 

mycolactone a drug candidate for the treatment of inflammatory disorders. Its development for 

clinical use nevertheless faces two major challenges. Firstly, the chemical synthesis of this 

complex natural product is a costly, multi-step process (1, 20-22), which challenges bulk 

industrial production. Secondly, whether mycolactone can be engineered to dissociate 

immunosuppression and analgesia from cytotoxicity is currently unknown (23-25). Here we 

screened a large panel of structural variants of mycolactone in biochemical and cellular assays 

reflecting its biological activities. We identified a simplified and detoxified version of 

mycolactone that bound to analgesia-mediating receptors comparably to the natural product, and 

mimicked its inhibitory action on inflammatory cytokine production. Importantly, this synthetic 

compound efficiently protected mice against chronic skin inflammation and inflammatory pain, 

establishing the therapeutic potential of this mycolactone derivative. 

 

RESULTS  

Immune modulating and cytopathic features of mycolactone can be partially dissociated 

Mycolactone produced by M. ulcerans is composed of three structural modules, a 12-membered 

lactone ring and two polyketide-derived chains that are branched to the core in the north and 

south positions (Fig. 1). Bacteria produce a mixture of cis/trans isomers designated A/B. To 



investigate the contribution of each subunit of mycolactone A/B to biological activity, we used 

synthetic compounds corresponding to the lactone core and fatty-acyl chains assembled in 

diverse combinations, and harboring variations in the structure and hydroxylation of the 

polyketide chains (20, 23) (Fig. 1). Variants were compared to mycolactone for their capacity to 

block the activation-induced production of IL-2 by Jurkat cells, using IC50 as a comparator (Fig. 

2A, S1). In this T cell model, mycolactone dose-dependently inhibited the production of IL-2 

upon cell stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (IO) with an 

IC50 of 40 nM (13). Variants were also assessed for their cytopathic activity in the human 

epithelial cell line HeLa, a model that is highly susceptible to mycolactone-mediated anoïkis (5). 

Here, we compared variants for their capacity to induce cell detachment after 48 h, conditions in 

which mycolactone induces >80% cytotoxicity (Fig. 2A, S1). Figure 2B plots the aforementioned 

parameters of immunomodulation and cytotoxicity of each variant. 

 

Notably, all variants were less active than mycolactone, indicating that each structural 

module of the natural molecule has a biological role (Fig. 2B, S1). Compared to mycolactone, 

immunomodulatory activity was best retained in compounds 32b, 30, 5r and 5b (IC50 of 1.5 µM), 

in which the north chain is missing (5b, 5r and 30) or replaced by a 4-alkyl-1,2,3-triazole (32b). 

Amongst them, saturation of the lactone core (30) or substitution of the C1’-C7’ sector of the 

south chain with a cinnamyl (5r) did not alter activity. Of note, 32b, 30 and 5r were more 

cytotoxic than 5b, showing that cytotoxicity and immunosuppressive activity can be, at least 

partially, dissociated. A second group of mycolactone analogues displaying IC50 in the 2.2-3.4 

µM range encompassed derivatives with inverted and/or deoxy C12', C13' and C15' stereocenters. 

In accordance with previous reports (24), a significant loss in immunosuppressive and cytotoxic 



activity was observed when the hydroxyl group in position C12’ was suppressed (5j). Likewise, 

modification of the C1’-C5’ sector of the southern fragment by introduction of a benzoyl motif 

was also detrimental to activity (5q). A last group of 9 analogues showed no detectable inhibitory 

activity in the IL-2 assay, in tested conditions (IC50 ≥ 4 µM). Their lack of reactivity indicated 

that shortening the polyketide chain and removing more than one out of three hydroxyl groups in 

the C12’-C13’-C15’ sector has dramatic impact on immunosuppressive activity. Intriguingly, 

variant 4b corresponding to C8-desmethyl mycolactone A/B fell in this category, suggesting that 

intra-molecular interactions between the northern chain and lactone core may limit reactivity. 

Overall, this study showed that the structural requirements for cytotoxic and immunosuppressive 

activities do not strictly overlap. The 5b variant, corresponding to mycolactone without north 

chain and core C8-methyl, displayed an optimal ratio of immune suppression to cytotoxicity, 

prompting us to examine its biological properties in further detail. 

 

5b suppresses inflammatory responses in human primary cells 

To gain insight into the translational potential of 5b, we next assessed its impact on the viability 

and functional biology of key subsets of human inflammatory cells. Polymorphonuclear 

neutrophils (PMN) dominate the early stages of inflammation, and activated PMN sustain 

inflammatory responses via the production of cytokines like TNF-α (26). PMN isolated from 

venous blood of healthy donors were incubated for up to 24 h with mycolactone or 5b, prior to 

activation with PMA. Although the viability of PMN declined in culture, we did not observed 

increased mortality in the presence of mycolactone or 5b, irrespective of the cell activation state 

(Fig. S2). Notably, exposure to mycolactone, and 5b to a lower extent, efficiently blocked the 

ability of PMN to release TNF-α upon activation (Fig. 3A). Production of TNF-α by LPS-



stimulated monocyte-derived macrophages (MDM) was also potently inhibited by pre-incubation 

with mycolactone or 5b, without evidence of cell mortality (Fig. 3B). Of note, prolonged 

exposure (>48h) of MDM to immunomodulatory concentrations of mycolactone or 5b eventually 

altered cell viability (Fig. 3C). In contrast, the viability of CD4+ T cells was not altered by 

exposure to mycolactone or 5b for up to 48 h (Fig. S3). Their PMA/IO-induced production of IL-

2 and interferon (IFN)-γ was markedly inhibited by pre-incubation with mycolactone or 5b (as 

shown for IL-2 in Fig. 3D).  

 

Mycolactone binding to AT2R, evidenced by competition with an AT2R agonist in vitro, 

was previously reported to mediate analgesia (6). We found that mycolactone and 5b displaced 

the AT2R agonist with comparable efficacy (Fig. 3E). Finally, since BU formation involves 

primarily the destruction of human dermis by mycolactone, we used primary human dermal 

fibroblasts (HDF) to model the potential ulcerative properties of 5b in vivo. As shown in Figure 

3F, HDF displayed a high susceptibility to mycolactone-mediated killing, with a 50% loss in cell 

viability upon incubation with nanomolar concentrations of mycolactone for 48 h. In support for 

safe use in humans, the cytotoxicity of variant 5b was markedly lower. 

 

Table 1 summarizes the IC50 measured for mycolactone and 5b in the biochemical and 

cellular assays described above. They show that 5b conserved the biological activities of 

mycolactone to different degrees. Capacity to bind AT2R expressed on recombinant cells was 

largely preserved in 5b, suggesting that full and truncated molecules may have comparable 

analgesic effects in vivo. Variant 5b also mimicked mycolactone for inhibition of cytokine 

production by PMN, MDM and CD4+ T cells, with a 162-320 fold reduction in activity. 



Importantly, anti-inflammatory effects were always observed in the absence of cytotoxicity. In 

fact, the viability of PMN and CD4+ T cells was not altered by exposure to mycolactone or 5b, in 

the conditions tested. In the mycolactone-susceptible MDM and HDF, 5b was 514 and 1910 

times less toxic than mycolactone, respectively. In addition to be synthetically simpler than the 

mycobacterial factor, 5b may therefore have a broader therapeutic window. 

 

Mycolactone and 5b both protect against chronic skin inflammation 

We used the PMA mouse model of chronic skin inflammation (27, 28) to evaluate the anti-

inflammatory potential of mycolactone and 5b in vivo. A 0.5 mg/kg dose was chosen for 

mycolactone, which is the maximum concentration allowing injections at >2 days intervals 

without induction of skin ulceration. Because it was less potent than mycolactone in cellular 

assays, we administered 5b at 5 mg/kg, corresponding to the maximum solubility of the 10x 

injection solution in PBS. Repeated applications of PMA on the back of hairless mice (from D1 to 

D8 then at D10 and D12, Fig. 4A) triggered a visible inflammation of dorsal skin (Fig. 4B), 

characterized by cell infiltrates in dermis and epidermis, vascular dilation and tissue thickening 

(Fig. 4C-D). Notably, intraperitoneal injections of mycolactone at D0, D4, D8 and D12, and to a 

lower extent 5b, significantly reduced both macroscopic and microscopic signs of inflammation 

(Fig. 4B-C, Table S1). Of note, the protection afforded by 5b was more similar to that of 

mycolactone in skin areas situated at the periphery of the site of PMA application (Fig. S4). In 

histopathologic scoring of skin inflammation, 5b more closely resembled mycolactone’s anti-

inflammatory effects in the dermis (Fig. S4). In this tissue, a marked reduction in the recruitment 

of both acute and chronic inflammatory cells, fibrosis and vascular damage could be observed in 

both mycolactone- and 5b-treated mice.  

 



Systemic mycolactone and 5b relieve local inflammatory pain 

Anti-nociceptive activity of mycolactone was recently demonstrated by injection of mycolactone 

in mouse footpads and local assessment of pain sensitivity to a thermal stimulus (6). Having 

shown that mycolactone and 5b exert anti-inflammatory effects at a distance from the injection 

site, we investigated whether systemic delivery of the molecules induced local control of pain. 

We used the formalin assay in mice, as it is considered a reliable model of nociception that 

allows to discriminate inflammatory and non-inflammatory pain (29). Injection of a formalin 

solution into mouse hindpaws induces two distinct periods of stereotypical licking and biting 

behaviors. The first 5 minutes reflect a direct effect on nociceptors (acute pain) while the second 

phase, lasting from 10 to 40 min, involves primarily inflammatory processes (Fig. 5A). Figure 5B 

shows that intraperitoneal injection of mycolactone (0.5 mg/kg) or 5b (5 mg/kg) 1 h before 

formalin injection had no effect on the early phase of the assay. In contrast, both molecules were 

anti-nociceptive in the late phase (Fig. 5C), demonstrating their systemic and selective effect 

against inflammatory pain. As a centrally acting analgesic, morphine was anti-nociceptive in both 

phases. 

 

DISCUSSION  

Pathogenic species of mycobacteria have evolved to produce original polyketide synthase 

products, with virulence and immunomodulatory properties (30). This is well exemplified by M. 

ulcerans, which differs from its M. marinum ancestor essentially by the presence of giant 

plasmid-encoded polyketide synthases producing mycolactone (31, 32). Using cellular models, 

we and others have shown over the past few years that in addition to cause the formation of 

painless ulcers, mycolactone is a natural immunosuppressor operating via a novel mechanism of 



action (12-15, 17, 18, 33). Here, we demonstrate that mycolactone can be used therapeutically to 

suppress inflammatory responses. In agreement with cellular assays demonstrating its inhibitory 

activity on cytokine production by activated neutrophils, macrophages and T cells, systematically 

delivered mycolactone was effective at limiting inflammation in mouse models of skin 

inflammation and rheumatoid arthritis (Fig. S5). 

 

Mycolactone was recently reported to reduce pain locally, by stimulating the 

angiotensin/Cox-1/PGE2 pathway in neurons, and potentially other AT2Rs expressing cells such 

as macrophages or fibroblasts (34). In the present study, we showed that mycolactone is effective 

at controlling inflammatory pain generated distantly. Whether this analgesic effect operates via 

AT2Rs, suppression of inflammatory cytokine production, or both mechanisms, will require more 

investigations. Our observation that mycolactone selectively reduces inflammatory pain in the 

formalin test in mice does not allow us to discriminate between one or the other of these 

mechanisms, as PGE2 and cytokine release both develop during the late phase. However, the high 

potency of mycolactone and 5b in suppressing inflammatory cytokine production, including pro-

algesic TNF-α (Fig. 3), strongly suggests that this immunomodulatory activity is at play. The 

identification of the yet mysterious molecular receptor by which mycolactone blocks cytokine 

production will be a profitable area of research, as it will allow to dissect further the mechanisms 

of its analgesic properties.  

 

Since mycolactone is not easily amenable to large-scale synthesis, we aimed to determine 

whether its structure could be simplified without loss in biological activity. In vitro and in vivo 

assays identified the 5b subunit as an alternative to full mycolactone retaining capacity to block 



cytokine production by neutrophils, macrophages and lymphocytes, although with less potency. 

From a clinical perspective, 5b offers several advantages over the natural molecule, in addition to 

being easier to chemically synthesize. Firstly, its smaller size (572 vs 743 Da) should allow a 

better distribution of the product throughout the fluids and tissues of the body. Secondly, cellular 

assays showed that 5b retains the desirable (immunomodulatory and AT2R binding) properties of 

mycolactone relatively better than its undesirable (cytotoxic) ones. Accordingly, 5b delivered at 5 

mg/kg >3 times at 2 days intervals was not ulcerative in mice. In comparison, injections of 

mycolactone at this frequency, and at ten times lower concentrations, caused skin lesions. The 

dosage regimen used in the present work to demonstrate the protective efficacy of 5b could 

therefore be intensified to improve clinical benefit, without inducing side effects. In conclusion, 

our study provides the proof-of-concept that mycolactone derivatives have a therapeutic 

potential. It paves the way for future research on mycolactone-inspired molecules, for the 

treatment of inflammatory pain and inflammatory diseases. 

 

MATERIALS AND METHODS 

 

Study design 

This study was designed to evaluate the potential of mycolactone, and a series of truncated 

synthetic variants of this natural product, as clinical immunosuppressants. A first screen of the 

molecules was performed in human cell lines, leading to the identification of a lead candidate 

retaining the immunosuppressive properties of mycolactone relatively better than its cytopathic 

activity. The translational potential of mycolactone and synthetic surrogate was then evaluated in 



functionally relevant subsets of human primary cells (from at least three donors) and mouse 

models of inflammatory disorders (PMA-induced skin inflammation and formalin-induced pain). 

Mean clinical scores of inflammation were determined in mice randomly grouped on a weight 

basis, in a double blind manner. Outliers were defined as at least 1.5 x IQR greater than the upper 

quartile, or 1.5 x IQR less than the lower quartile (IQR being the interquartile range = upper 

quartile value minus lower quartile value). There was no outlier in the skin inflammation study. 

Those detected in the formalin-induced pain assay were excluded from the statistical analysis. 

 

Natural mycolactone and synthetic variants 

Mycolactone was purified from Mycobacterium ulcerans bacterial pellets (strain 1615, ATCC 

35840) then quantified by spectrophotometry (3, 35). Modular variants of mycolactone were 

synthesized as described (20, 23). Stock solutions of mycolactone and variants were prepared in 

dimethyl sulfoxide (DMSO), then diluted 1000x in culture medium for cellular assays or 10x in 

phosphate buffered saline (PBS) before injection in animals. In all cases, controls exposed to the 

same volume of vehicle were included. 

 

Cell cultures 

HeLa cells (ATCC CCL-2TM), Jurkat E6.1 (ATCC TIB-152TM) T cells and adult HDF (Life 

Technologies, C-013-5C) cells were cultured in RPMI GlutamaxTM (Life Technologies), 

supplemented with 10% heat-inactivated fetal calf serum (FCS) (Invitrogen) and 

penicillin/streptomycin (100 U/ml, 100 µg/ml). Human primary T cells were isolated from blood 

donors by Ficoll density gradient centrifugation and CD4+ T cell purification by negative 

depletion (Miltenyi Biotec). Human primary macrophages were obtained from peripheral blood-



derived monocytes, isolated by adhesion to tissue culture plastic-ware and cultured with 10 ng/ml 

human GM-CSF (Peprotech) for 7-12 days. For PMN isolation, blood samples from normal 

human donors drawn in EDTA were fractionated by density centrifugation on Lympholyte-Poly 

separation medium (Cedarlane Labs) as described (36), and PMN maintained in X-Vivo 15 

medium (BioWhittaker).  

 

Assays of cytotoxic and immunosuppressive activity 

Detachment-induced cell death studies used HeLa cells seeded in 96-well plates (104 cells/well) 

and incubated with variants or mycolactone (16 µM), or vehicle as control, for 48 h prior to 

enumeration of cells excluding Trypan Blue. The differential impact of mycolactone and 5b on 

the viability of human primary HDF, MDM and CD4+ T lymphocytes was measured with the 

methyl-thiazolyl-tetrazolium (MTT) reduction assay. We used phosphatidylserine exposure 

(Annexin V staining) and loss of membrane integrity (propidium iodide (PI) staining) to further 

assess the induction of apoptosis in human primary CD4+ T lymphocytes and PMN. 

Immunosuppressive activity on T cells was measured through the inhibition of IL-2 and IFN-γ 

production by Jurkat or human primary CD4+ T lymphocytes incubated with mycolactone or 5b 

for 1 h prior to 16 h of activation with PMA/IO, as described (13). Human primary PMN were 

incubated with mycolactone or 5b for 1-24 h before 2 h of activation with 100 ng/ml PMA. 

Human primary MDM were incubated with mycolactone or 5b for 1 h prior to 16 h of activation 

with 1 µg/ml LPS. Supernatants of PMN and MDM were then collected to quantify TNF-α 

release using ELISA. Mean percentages of inhibition of viability or cytokine release were 

calculated in duplicates, relative to vehicle controls.  

 



Competitive binding to AT2R 

Differential binding of mycolactone and 5b to AT2R was assessed through dose-dependent 

displacement of the binding of an agonist radioligand ([125I]CGP 42, 112A at 0.01 nM) from 

recombinant HEK cell membrane preparations (Cerep Inc, Seattle, WA, Assay reference 0026). 

 

Mice 

Studies on PMA-induced skin inflammation and formalin-induced pain used Hairless mice (Skh-

1) and OF1 mice (Crl:OF1) respectively, both purchased at Charles River and housed in 

conventional animal facilities of ETAP-Ethologie Appliquée. Before experimentation, animals 

were housed for 5 days in temperature-, humidity- and light-controlled conditions (inverted 12 h 

light-dark cycle, light off at 8 am). Mice between 7 and 9 weeks of age were used in compliance 

with the European Communities Council Directive of 22 September 2010 on the approximation 

of laws, regulations, and administrative provisions of the Member States regarding the protection 

of animals used for scientific purposes, the rules edicted by the ASAB Ethical Committee for the 

treatment of animals in behavioral research and teaching (Animal Behavior 2006;71:245-253), 

the NIH Guide for the Care and Use of Laboratory Animals and the UK legislation of in vivo 

aspects in inflammation research. The studies received the approval by the French Ministry of 

Higher Education and Research (agreements no. CELMEA-2012-0021 and 00404.01). 

 

PMA-induced skin inflammation 

Hairless Skh-1 mice were randomized in 4 groups of 6 mice after the acclimatization period. 

Inflammation was induced by a daily application of 20 µg of PMA on dorsal skin, from D1 to D8 

then at D10 and D12, as previously described (27). Mycolactone (0.5 mg/kg), 5b (5 mg/kg), or 

vehicle as control, were injected intraperitoneally at D0, D4, D8 and D12. Administration of 



mycolactone or 5b with this regimen did not induce tissue damage at the site of injection. 

Inflammation of mouse dorsal skin was scored daily by clinical examination of the animals, and 

measure of an index of cutaneous inflammation (0 [no or no further skin inflammation], 1 [weak 

skin inflammation], 2 [moderate skin inflammation], 3 [important skin inflammation], and 4 

[very important skin inflammation]) in three areas: the site of PMA application, the periphery of 

this site and the rest of the mouse dorsum. A global score of the external aspect of cutaneous 

inflammation was then calculated, corresponding to the sum of these 3 measures (Table S1). 

Mice were sacrificed at D14, and photos of the mouse dorsum were taken. Biopsies were 

harvested at the different sites, fixed and stored in Roti®-Histofix 4% solution (Carl Roth, 

Karlsruhe, Germany) for histological examination at different depth of 6-10 cross-sections (5µm 

thickness) and stained with hematoxylin and eosin. Inflammation was scored in epidermis, 

dermis and hypodermis on the basis of tissue-specific histopathological parameters. A global 

histopathological score was then calculated (0-44), corresponding to the sum of these measures 

(Table S1).  

 

Formalin-induced pain 

The analgesic properties of mycolactone and 5b were tested in the formalin-induced paw licking 

test (37, 38) in OF1 mice. Briefly, mice were randomized in 5 groups of 8 mice after the 

acclimatization period. Mycolactone and 5b were administered intraperitoneally at 0.5 and 5 

mg/kg respectively, 60 minutes before the subcutaneous injection of the right hind-paw with 10 

µl of a 5% formalin solution. Two negative control groups, injected with PBS (neutral) or ethanol 

vehicle (vehicle) were tested in the same conditions. A group injected with 3 mg/kg morphine 15 

minutes before formalin injection was used as a positive reference. The duration of formalin-



injected paw licking and the number of body tremors during the early phase (0-5 min) and the 

late phase (10-40 min) were recorded. 

 

Statistical analysis 

Data of the animal studies were analyzed with the Kruskal-Wallis test followed in case of 

significance (p < 0.05) by the Mann-Whitney U test (two-sided) to compare each treated group 

with its vehicle control. Statistical treatments were performed with the Statview®5 software (SAS 

Institute Inc., USA) and values of P ≤ 0.05 were considered significant. The Prism software 

(5.0d; La Jolla, CA) was used for graphical representation. 

 

SUPPLEMENTARY MATERIALS 

Fig. S1. Compared cytopathic and immunosuppressive effects of mycolactone and variants 

Fig. S2. Viability of human primary PMN exposed to mycolactone or 5b 

Fig. S3. Viability of human primary CD4+ T lymphocytes exposed to mycolactone or 5b 

Fig. S4. Protective effect of mycolactone and 5b against PMA-induced skin inflammation 

Fig. S5. Protective effect of mycolactone against rheumatoid arthritis 

Table S1. Macroscopic and microscopic scoring of PMA-induced skin inflammation 
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Table 1. Compared cytopathic and immunosuppressive activities of mycolactone and 5b in 

human primary cells, and binding to analgesia-mediating receptors in vitro.  

Cells PMN MDM T CD4+ HDF tHEKa 

Assay PMA-
induced 

production 
of TNF-α 

LPS-
induced 

production 
of TNF-α 

Cell 
viability 

 

PMA/IO- 
induced 

production 
of IL-2 

PMA/IO- 
induced 

production 
of IFN-γ  

Cell 
viability 

 

AT2R 
binding 

 

5bb 2.0 +/- 0.7 

(µM) 

3.5 +/- 2.6 

(µM) 

9.0 +/- 1.4 

(µM) 

3.9 +/- 3.4 

(µM) 

1.8 +/- 1.3 

(µM) 

12.0 +/- 4.2 

(µM) 

16.0 

(µM) 

Mycob 13 +/- 4 

(nM) 

12 +/- 6 

(nM) 

18 +/- 18 

(nM) 

12 +/- 5 

(nM) 

7 +/- 3 

(nM) 

6 +/- 3 

(nM) 

9.2 

(µM) 

IC50 
ratioc 162 285 514 320 268 1910 2 

a AT2R-transfected HEK cells 
b Data in cellular assays are mean IC50 +/- SD from at least 2 donors. 
c 5b versus Myco 

 

 

	  

	  

	  



	
	
	
	

	
	
	
	
	 	

Fig.	S1.	Compared	cytopathic	and	immunosuppressive	effects	of	mycolactone	and	variants.	The	
differential	 capacity	of	mycolactone	and	variants	to	 inhibit	 IL-2	production	by	activated	Jurkat	T	
cells	(A)	and	induce	the	detachment	and	death	of	HeLa	cells	(B),	are	shown.	Data	are	means	+/-	SD	
measured	on	≥2	technical	replicates.	
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Fig.	S2.	Viability	of	human	primary	PMN	exposed	to	mycolactone	or	5b.	Peripheral	
blood-derived	PMN	were	exposed	to	mycolactone,	5b	or	vehicle	as	control	for	20h,	
then	activated	with	PMA	for	1h	or	not.	The	percentage	of	PI	negative	(viable)	cells,	
as	determined	by	flow	cytometry,	is	shown.	Comparable	results	were	obtained	in	4	
donors.		
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Fig.	S3.	Viability	of	human	primary	CD4+	T	lymphocytes	exposed	to	mycolactone	or	5b.	Peripheral	
blood-derived	CD4+	T	lymphocytes	were	exposed	to	mycolactone,	5b	or	vehicle	as	control	for	48h.	
(A)	Cell	viability,	as	assessed	by	MTT	reduction.	Data	are	mean	percentages	+/-	SD	of	duplicates,	
relative	 to	 solvent	 controls.	 (B)	 Induction	 of	 cell	 apoptosis,	 as	 evaluated	 by	 Annexin	 V	 (early	
apoptosis)	 and	 PI	 (late	 apoptosis)	 staining	 in	 flow	 cytometry.	 Data	 are	 mean	 percentages	 from	
duplicates	+/-	SD	in	each	category.	Comparable	results	were	obtained	in	4	donors.	
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Fig.	 S4.	 Protective	 effect	 of	 mycolactone	 and	 5b	 against	 PMA-induced	 skin	 inflammation.	 (A)	
Clinical	 scores	 reflecting	 the	 external	 aspect	 of	 mouse	 skin	 at	 the	 periphery	 of	 the	 site	 of	 PMA	
injection	(B)	Inflammation	scores	corresponding	to	the	histopathological	analysis	of	dermis	sections.	
Mice	 receiving	 PMA	 were	 injected	 with	mycolactone	 (Myco)	 or	 5b,	 compared	 to	 vehicle	 controls	
(Vehicle).	 Animals	 not	 receiving	 PMA	 were	 included	 as	 controls	 (Ctrl).	 (Mann-Whitney	 U	 test	 on	
means;	n	=	6;	**P	<	0.01	vs.	PMA/Vehicle).	
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A B 

Fig.	 S5.	 Protective	 effect	 of	 mycolactone	 against	 rheumatoid	 arthritis.	 (A)	 Arthritis	 score	 of	 mice	
injected	with	mycolactone	(Myco),	compared	to	vehicle	controls	(Ctrl).	(B)	H&E	stainings	of	sections	of	
paraffin-embedded	 decalcified	 ankle	 joints	 at	 day	 6.	 Original	 magnification	 ×20.	 C57Bl6	 mice	 were	
purchased	 from	 Jackson	 Laboratories	 and	 KRN

	
TCR	 transgenic	 mice	 on	 a	 C57Bl6	 background	 (KRN)	

provided	by	D.	Mathis	and	C.	Benoist	were	bred	to	NOD	mice	to	generate	K/BxN	mice.	Passive	arthritis	
was	induced	by	intravenous	injection	of	34	µl	serum	from	K/BxN	mice.	Mice	(n=8)	were	subcutaneously	
injected	at	 the	base	of	 the	 tail	with	Mycolactone	 (0.5	mg/kg)	or	 vehicle	as	 control	 at	days	 -1	and	1.	
Arthritis	was	scored	daily	for	ten	days	from	day	2	post	injection	of	serum,	by	clinical	examination	(index	
of	all	four	paws	was	added:	0	[unaffected],	1	[swelling	of	one	joint],	2	[swelling	of	more	than	one	joint],	
and	3	[severe	swelling	of	the	entire	paw]).	Ankle	joints	were	fixed	and	decalcified	 in	Formical-4	(Decal	
Chemical	 Corp,	 NY,	 USA)	 for	 two	 weeks	 and	 embedded	 in	 paraffin.	 Six	 micrometer	 sections	 were	
stained	 with	 hematoxylin/eosin	 (top)	 or	 Masson’s	 Trichrome	 (bottom)	 for	 histopathological	
examination.	
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Table S1. Macroscopic and microscopic scoring of PMA-induced skin inflammation 

 
Macroscopic 
 
The global macroscopic score is the sum of three regional scores, determined as follows: 
 

 DEGREE OF SKIN INFLAMMATION 
Site of PMA  
application 

Periphery Rest of the dorsum 

0 = None or no more     
1 = Moderate     
2 = Moderately important     
3 = Important     
4 = Very important    

 
Microscopic 

 
The global microscopic score is the sum of the parameters listed below, it defines a level of 
skin inflammation as follows: 

From 0 to 5 = Normal skin 
From 6 to 12 = Slightly inflammatory skin 
From 13 to 18 = Moderately inflammatory skin 
From 19 to 24 = Inflammatory skin. 
From 25 to 30 = Clearly inflammatory skin 
From 31 to 36 = Very inflammatory skin 
From 37 to 44 = Hyper-inflammatory skin 

 
EPIDERMIS 
Stratum corneum 

0 = Normal 
1 = Area (s) of ulceration 
2 = Sparse foci of ulceration 
3 = Abundant foci of ulceration 
4 = Global ulceration 

Granular layer 
0 = Normal 
1 = Area (s) of ulceration 
2 = Sparse foci of ulceration 
3 = Abundant foci of ulceration 
4 = Global ulceration 

Qualitative changes 
0 = Normal 
1 = Slight hyperkeratosis 
2 = Hyperkeratosis 

Quantitative changes 
0 = None 
1 = Minimal acanthosis 
2 = Moderate acanthosis 
3 = Acanthosis 

Basal membrane 
0 = Normal. 
1 = Locally altered 
2 = Destroyed 



 
DERMIS 

Collagen fibers 
0 = Normal 
1 = Slight densification 
2 = Densification 
3 = Densification + fibroblastic hyperplasia 

Deposits in interstitial space 
0 = No 
1 = Yes 

Elastic fibers 
0 = Normal 
1 = Slight densification or de-structuration 
2 = Densification or de-structuration 

Pigments 
0 = No 
1 = Yes 

Vascular network 
0 = Normal 
1 = A few congestive vessels 
2 = Congestive vessels 

Cells in transit 
0 = No streaks of inflammatory cells 
1 = Few streaks and infiltrate of inflammatory cells 
2 = A few streaks and infiltrate of inflammatory cells 
3 = Streaks of inflammatory cells 
4 = Many streaks of inflammatory cells 
5 = Quite a few streaks of inflammatory cells 
6 = Numerous streaks of inflammatory cells 

Pathogens 
0 = No 
1 = Yes 

Annexes 
0 = Normal 
1 = Slightly altered 
2 = Altered 

HYPODERMIS 
Quantitative and qualitative changes 

0 = No 
1 = Slight fibro-inflammatory densification 
2 = Fibro-inflammatory densification 

Deposits 
0 = No 
1 = Yes 

Infiltrates 
0 = No streaks of inflammatory cells.  
1 = Few streaks and infiltrate of inflammatory cells 
2 = Some streaks and infiltrate of inflammatory cells 
3 = Streaks of inflammatory cells 
4 = Many streaks of inflammatory cells 
5 = Quite a few streaks of inflammatory cell 
6 = Numerous streaks of inflammatory cells 

Vascular network 
0 = Normal 
1 = A few congestive vessels 
2 = Congestive vessels 
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