B. Poulain, M. Popoff, and J. Molgo, How do the Botulinum Neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action, The Botulinum J., vol.1, issue.1, pp.14-87, 2008.
DOI : 10.1504/TBJ.2008.018951

URL : https://hal.archives-ouvertes.fr/hal-00303601

S. Arnon, R. Schechter, T. Inglesby, D. Henderson, J. Bartlett et al., Botulinum Toxin as a Biological Weapon, JAMA, vol.285, issue.8, pp.1059-1070, 2001.
DOI : 10.1001/jama.285.8.1059

G. Schiavo, M. Matteoli, and C. Montecucco, Neurotoxins affecting neuroexocytosis, Physiol Rev, vol.80, pp.717-766, 2000.

D. Lacy, W. Tepp, A. Cohen, B. Dasgupta, and R. Stevens, Crystal structure of botulinum neurotoxin type A and implications for toxicity, Nature Structural Biology, vol.11, issue.10, pp.898-902, 1998.
DOI : 10.1107/S0021889891004399

O. Rossetto and C. Montecucco, Presynaptic Neurotoxins with Enzymatic Activities, Handb Exp Pharmacol, vol.184, pp.129-170, 2008.
DOI : 10.1007/978-3-540-74805-2_6

D. Kumaran, S. Eswaramoorthy, W. Furey, J. Navaza, M. Sax et al., Domain Organization in Clostridium botulinum Neurotoxin Type E Is Unique: Its Implication in Faster Translocation, Journal of Molecular Biology, vol.386, issue.1, pp.233-245, 2009.
DOI : 10.1016/j.jmb.2008.12.027

S. Swaminathan and S. Eswaramoorthy, Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B, Nature Structural Biology, vol.7, issue.8, pp.693-699, 2000.
DOI : 10.1038/78005

C. Montecucco, How do tetanus and botulinum toxins bind to neuronal membranes?, Trends in Biochemical Sciences, vol.11, issue.8, pp.314-317, 1986.
DOI : 10.1016/0968-0004(86)90282-3

A. Rummel, T. Eichner, T. Weil, T. Karnath, A. Gutcaits et al., Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.359-364, 2007.
DOI : 10.1073/pnas.0609713104

A. Rummel, Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity, Curr Top Microbiol Immunol, vol.364, pp.61-90, 2013.
DOI : 10.1007/978-3-662-45790-0_4

T. Binz and A. Rummel, Cell entry strategy of clostridial neurotoxins, Journal of Neurochemistry, vol.277, issue.6, pp.1584-1595, 2009.
DOI : 10.1111/j.1471-4159.2009.06093.x

C. Harper, S. Martin, T. Nguyen, S. Daniels, N. Lavidis et al., Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism, Journal of Biological Chemistry, vol.286, issue.41, pp.35966-35976, 2011.
DOI : 10.1074/jbc.M111.283879

D. Hoch, M. Romero-mira, B. Ehrlich, A. Finkelstein, B. Dasgupta et al., Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes., Proceedings of the National Academy of Sciences, vol.82, issue.6, pp.1692-1696, 1985.
DOI : 10.1073/pnas.82.6.1692

M. Montal, Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel, Toxicon, vol.54, issue.5, pp.565-569, 2009.
DOI : 10.1016/j.toxicon.2008.11.018

C. Montecucco, G. Schiavo, and B. Dasgupta, Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes, Biochemical Journal, vol.259, issue.1, pp.47-53, 1989.
DOI : 10.1042/bj2590047

Y. Humeau, F. Doussau, N. Grant, and B. Poulain, How botulinum and tetanus neurotoxins block neurotransmitter release**This paper is dedicated to the memory of Heiner Niemann., Biochimie, vol.82, issue.5, pp.427-446, 2000.
DOI : 10.1016/S0300-9084(00)00216-9

B. Geny and M. Popoff, Bacterial protein toxins and lipids: pore formation or toxin entry into cells, Biology of the Cell, vol.44, issue.11, pp.667-678, 2006.
DOI : 10.1042/BC20050082

J. Jiang, B. Pentelute, R. Collier, and Z. Zhou, Atomic structure of anthrax protective antigen pore elucidates toxin translocation, Nature, vol.521, issue.7553, pp.545-549, 2015.
DOI : 10.1016/j.jmb.2007.05.022

A. Chassaing, S. Pichard, A. Araye-guet, J. Barbier, V. Forge et al., Solution and membrane-bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain, FEBS Journal, vol.274, issue.23, pp.4516-4525, 2011.
DOI : 10.1111/j.1742-4658.2011.08053.x

URL : https://hal.archives-ouvertes.fr/hal-01138149

A. Fischer and M. Montal, Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes, Proceedings of the National Academy of Sciences, vol.104, issue.25, pp.10447-10452, 2007.
DOI : 10.1073/pnas.0700046104

L. Koriazova and M. Montal, Translocation of botulinum neurotoxin light chain protease through the heavy chain channel, Nature Structural Biology, vol.10, issue.1, pp.13-18, 2003.
DOI : 10.1038/nsb879

C. Montecucco, G. Schiavo, Z. Gao, E. Bauerlein, P. Boquet et al., Interaction of botulinum and tetanus toxins with the lipid bilayer surface, Biochemical Journal, vol.251, issue.2, pp.379-383, 1988.
DOI : 10.1042/bj2510379

M. Galloux, H. Vitrac, C. Montagner, S. Raffestin, M. Popoff et al., Membrane Interaction of Botulinum Neurotoxin A Translocation (T) Domain: THE BELT REGION IS A REGULATORY LOOP FOR MEMBRANE INTERACTION, Journal of Biological Chemistry, vol.283, issue.41, pp.27668-27676, 2008.
DOI : 10.1074/jbc.M802557200

URL : https://hal.archives-ouvertes.fr/hal-01187636

M. Baldwin, M. Bradshaw, E. Johnson, and J. Barbieri, The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability, Protein Expression and Purification, vol.37, issue.1, pp.187-195, 2004.
DOI : 10.1016/j.pep.2004.05.009

E. Stura, L. Roux, L. Guitot, K. Garcia, S. Bregant et al., Structural Framework for Covalent Inhibition of Clostridium botulinum Neurotoxin A by Targeting Cys165, Journal of Biological Chemistry, vol.287, issue.40, pp.33607-33614, 2012.
DOI : 10.1074/jbc.M112.396697

URL : https://hal.archives-ouvertes.fr/hal-00738090

P. Schuck, Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling, Biophysical Journal, vol.78, issue.3, pp.1606-1619, 2000.
DOI : 10.1016/S0006-3495(00)76713-0

A. Chenal, P. Savarin, P. Nizard, F. Guillain, D. Gillet et al., Membrane Protein Insertion Regulated by Bringing Electrostatic and Hydrophobic Interactions into Play. A CASE STUDY WITH THE TRANSLOCATION DOMAIN OF THE DIPHTHERIA TOXIN, Journal of Biological Chemistry, vol.277, issue.45, pp.43425-43432, 2002.
DOI : 10.1074/jbc.M204148200

Y. Nozaki, [3] The preparation of guanidine hydrochloride, Methods Enzymol, vol.26, pp.43-50, 1972.
DOI : 10.1016/S0076-6879(72)26005-0

A. Chenal, J. Karst, S. Perez, A. Wozniak, A. Baron et al., Calcium-Induced Folding and Stabilization of the Intrinsically Disordered RTX Domain of the CyaA Toxin, Biophysical Journal, vol.99, issue.11, pp.3744-3753, 2010.
DOI : 10.1016/j.bpj.2010.10.016

S. Cai, R. Kukreja, S. Shoesmith, T. Chang, and B. Singh, Botulinum Neurotoxin Light Chain Refolds at Endosomal pH for its Translocation, The Protein Journal, vol.9, issue.7-8, pp.455-462, 2006.
DOI : 10.1007/s10930-006-9028-1

B. Lai, R. Agarwal, L. Nelson, S. Swaminathan, and E. London, Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration, The Journal of Membrane Biology, vol.44, issue.2, pp.191-201, 2010.
DOI : 10.1007/s00232-010-9292-z

F. Fu, D. Busath, and B. Singh, Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation, Biophysical Chemistry, vol.99, issue.1, pp.17-29, 2002.
DOI : 10.1016/S0301-4622(02)00135-7

T. Falguieres and L. Johannes, Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23, Biology of the Cell, vol.164, issue.2, pp.125-134, 2006.
DOI : 10.1042/BC20050001

R. Spooner and J. Lord, How Ricin and Shiga Toxin Reach the Cytosol of Target Cells: Retrotranslocation from the Endoplasmic Reticulum, Curr Top Microbiol Immunol, vol.357, pp.19-40, 2012.
DOI : 10.1007/82_2011_154

G. Feld, M. Brown, and B. Krantz, Ratcheting up protein translocation with anthrax toxin, Protein Science, vol.23, issue.5, pp.606-624, 2012.
DOI : 10.1002/pro.2052

M. Schmid, J. Robinson, and B. Dasgupta, Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles, Nature, vol.364, issue.6440, pp.827-830, 1993.
DOI : 10.1038/364827a0

S. Sun, W. Tepp, E. Johnson, and E. Chapman, Botulinum Neurotoxins B and E Translocate at Different Rates and Exhibit Divergent Responses to GT1b and Low pH, Biochemistry, vol.51, issue.28, pp.5655-5662, 2012.
DOI : 10.1021/bi3004928

Y. Wang, S. Malenbaum, K. Kachel, H. Zhan, R. Collier et al., Identification of Shallow and Deep Membrane-penetrating Forms of Diphtheria Toxin T Domain That Are Regulated by Protein Concentration and Bilayer Width, Journal of Biological Chemistry, vol.272, issue.40, pp.25091-25098, 1997.
DOI : 10.1074/jbc.272.40.25091

J. Ren, K. Kachel, H. Kim, S. Malenbaum, R. Collier et al., Interaction of Diphtheria Toxin T Domain with Molten Globule-Like Proteins and Its Implications for Translocation, Science, vol.284, issue.5416, pp.955-957, 1999.
DOI : 10.1126/science.284.5416.955

M. Montal, Botulinum Neurotoxin: A Marvel of Protein Design, Annual Review of Biochemistry, vol.79, issue.1, pp.591-617, 2010.
DOI : 10.1146/annurev.biochem.051908.125345