J. Costerton, P. Stewart, and E. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, issue.5418, pp.1318-1340, 1999.
DOI : 10.1126/science.284.5418.1318

D. Lebeaux and J. Ghigo, Infections associ??es aux biofilms, m??decine/sciences, vol.28, issue.8-9, pp.727-766, 2012.
DOI : 10.1051/medsci/2012288015

K. Lewis, Multidrug Tolerance of Biofilms and Persister Cells, Curr Top Microbiol Immunol, vol.322, pp.107-138, 2008.
DOI : 10.1007/978-3-540-75418-3_6

B. Ramey, M. Koutsoudis, S. Von-bodman, and C. Fuqua, Biofilm formation in plant???microbe associations, Current Opinion in Microbiology, vol.7, issue.6, pp.602-611, 2004.
DOI : 10.1016/j.mib.2004.10.014

N. Hoiby, Pseudomonas aeruginosa infection in cystic fibrosis Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis . A survey, Acta Pathol Microbiol Scand, vol.262, pp.1-96, 1977.

J. Lam, R. Chan, K. Lam, and J. Costerton, Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis, Infect Immun, vol.28, pp.546-56, 1980.

T. Marrie, J. Nelligan, and J. Costerton, A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead, Circulation, vol.66, issue.6, pp.1339-1380, 1982.
DOI : 10.1161/01.CIR.66.6.1339

A. Van-leeuwenhoek, An abstract of a letter from Mr Anthony Leevvenhoeck at Delft, dated Sep. 17, 1683, containing some microscopical observations, about animals in the scurf of the teeth, Philos Trans R Soc London, vol.14, 1684.

D. Lebeaux, A. Chauhan, O. Rendueles, and C. Beloin, From in vitro to in vivo Models of Bacterial Biofilm-Related Infections, Pathogens, vol.2, issue.2, pp.288-356, 2013.
DOI : 10.3390/pathogens2020288

URL : https://hal.archives-ouvertes.fr/pasteur-01385428

L. Hall-stoodley, J. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural environment to infectious diseases, Nature Reviews Microbiology, vol.146, issue.2, pp.95-108, 2004.
DOI : 10.1016/S0167-7012(99)00097-4

J. Bigger, Treatment of staphylococcal infections with penicillin, Lancet, vol.497, issue.500, 1944.

G. Geesey, R. Mutch, J. Costertin, and R. Green, Sessile bacteria: An important component of the microbial population in small mountain streams 1, Limnology and Oceanography, vol.23, issue.6, pp.1214-1237, 1978.
DOI : 10.4319/lo.1978.23.6.1214

G. Geesey, W. Richardson, H. Yeomans, R. Irvin, and J. Costerton, Microscopic examination of natural sessile bacterial populations from an alpine stream, Canadian Journal of Microbiology, vol.23, issue.12, pp.1733-1739, 1977.
DOI : 10.1139/m77-249

C. Zobell and E. Allen, The significance of marine bacteria in the fouling of submerged surfaces, J Bacteriol, vol.29, pp.239-51, 1935.

L. Mermel, M. Allon, and E. Bouza, Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter???Related Infection: 2009 Update by the Infectious Diseases Society of America, Clinical Infectious Diseases, vol.49, issue.1, pp.1-45, 2009.
DOI : 10.1086/599376

H. Normark, B. Normark, and S. , Antibiotic tolerance in pneumococci, Clinical Microbiology and Infection, vol.8, issue.10, pp.613-635, 2002.
DOI : 10.1046/j.1469-0691.2002.00477.x

K. Lewis, Persister cells, dormancy and infectious disease, Nature Reviews Microbiology, vol.71, issue.1, pp.48-56, 2007.
DOI : 10.1128/AAC.00684-06

A. Spoering and K. Lewis, Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials, Journal of Bacteriology, vol.183, issue.23, pp.6746-51, 2001.
DOI : 10.1128/JB.183.23.6746-6751.2001

S. Bernier, D. Lebeaux, and A. Defrancesco, Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin, PLoS Genetics, vol.73, issue.1, p.1003144, 2013.
DOI : 10.1371/journal.pgen.1003144.s008

URL : https://hal.archives-ouvertes.fr/pasteur-01385427

A. Chauhan, D. Lebeaux, and B. Decante, A Rat Model of Central Venous Catheter to Study Establishment of Long-Term Bacterial Biofilm and Related Acute and Chronic Infections, PLoS ONE, vol.40, issue.5, p.37281, 2012.
DOI : 10.1371/journal.pone.0037281.s009

URL : https://hal.archives-ouvertes.fr/pasteur-01385598

C. Walsh, Molecular mechanisms that confer antibacterial drug resistance, Nature, vol.406, issue.6797, pp.775-81, 2000.
DOI : 10.1038/35021219

D. Lebeaux and J. Ghigo, Les biofilms : des adversaires intraitables ?, Biofutur, vol.32, pp.34-43, 2013.

P. Stewart, Diffusion in Biofilms, Journal of Bacteriology, vol.185, issue.5, pp.1485-91, 2003.
DOI : 10.1128/JB.185.5.1485-1491.2003

D. Davies, Understanding biofilm resistance to antibacterial agents, Nature Reviews Drug Discovery, vol.2, issue.2, pp.114-136, 2003.
DOI : 10.1038/nrd1008

W. Nichols, S. Dorrington, M. Slack, and H. Walmsley, Inhibition of tobramycin diffusion by binding to alginate., Antimicrobial Agents and Chemotherapy, vol.32, issue.4, pp.518-541, 1988.
DOI : 10.1128/AAC.32.4.518

D. Beer, D. Srinivasan, R. Stewart, and P. , Direct measurement of chlorine penetration into biofilms during disinfection, Appl Environ Microbiol, vol.60, pp.4339-4383, 1994.

J. Anderl, M. Franklin, and P. Stewart, Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin, Antimicrobial Agents and Chemotherapy, vol.44, issue.7, pp.1818-1842, 2000.
DOI : 10.1128/AAC.44.7.1818-1824.2000

J. Rodriguez-martinez, S. Ballesta, and A. Pascual, Activity and penetration of fosfomycin, ciprofloxacin, amoxicillin/clavulanic acid and co-trimoxazole in Escherichia coli and Pseudomonas aeruginosa biofilms, International Journal of Antimicrobial Agents, vol.30, issue.4, pp.366-374, 2007.
DOI : 10.1016/j.ijantimicag.2007.05.005

Z. Zheng and P. Stewart, Penetration of Rifampin through Staphylococcus epidermidis Biofilms, Antimicrobial Agents and Chemotherapy, vol.46, issue.3, pp.900-903, 2002.
DOI : 10.1128/AAC.46.3.900-903.2002

L. Hoffman, D. Argenio, D. Maccoss, M. Zhang, Z. Jones et al., Aminoglycoside antibiotics induce bacterial biofilm formation, Nature, vol.436, issue.7054, pp.1171-1176, 2005.
DOI : 10.1038/nature03912

D. Hughes and D. Andersson, Selection of resistance at lethal and non-lethal antibiotic concentrations, Current Opinion in Microbiology, vol.15, issue.5, pp.555-60, 2012.
DOI : 10.1016/j.mib.2012.07.005

K. Jorgensen, T. Wassermann, and P. Jensen, Sublethal ciprofloxacin treatment leads to rapid development of highlevel ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa, Antimicrob Agents Chemother, 2013.

J. Costerton, Z. Lewandowski, D. Debeer, D. Caldwell, D. Korber et al., Biofilms, the customized microniche., Journal of Bacteriology, vol.176, issue.8, pp.2137-2179, 1994.
DOI : 10.1128/jb.176.8.2137-2142.1994

M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui, Effect of the Growth Rate of <i>Pseudomonas aeruginosa</i> Biofilms on the Susceptibility to Antimicrobial Agents, Chemotherapy, vol.43, issue.2, pp.137-178, 1997.
DOI : 10.1159/000239548

G. Tanaka, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka et al., Effect of the Growth Rate of <i>Pseudomonas aeruginosa </i> Biofilms on the Susceptibility to Antimicrobial Agents: ??-Lactams and Fluoroquinolones, Chemotherapy, vol.45, issue.1, pp.28-36, 1999.
DOI : 10.1159/000007162

E. Tuomanen, R. Cozens, W. Tosch, O. Zak, and A. Tomasz, The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth, J Gen Microbiol, vol.132, pp.1297-304, 1986.

P. Baudoux, N. Bles, S. Lemaire, M. Mingeot-leclercq, P. Tulkens et al., Combined effect of pH and concentration on the activities of gentamicin and oxacillin against Staphylococcus aureus in pharmacodynamic models of extracellular and intracellular infections, Journal of Antimicrobial Chemotherapy, vol.59, issue.2, pp.246-53, 2007.
DOI : 10.1093/jac/dkl489

D. Schlessinger, Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures., Clinical Microbiology Reviews, vol.1, issue.1, pp.54-63, 1988.
DOI : 10.1128/CMR.1.1.54

T. Mah, B. Pitts, B. Pellock, G. Walker, P. Stewart et al., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, vol.426, issue.6964, pp.306-316, 2003.
DOI : 10.1038/nature02122

A. Brooun, S. Liu, and K. Lewis, A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms, Antimicrobial Agents and Chemotherapy, vol.44, issue.3, pp.640-646, 2000.
DOI : 10.1128/AAC.44.3.640-646.2000

S. Pamp, M. Gjermansen, H. Johansen, and T. Tolker-nielsen, Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes, Molecular Microbiology, vol.133, issue.1, pp.223-263, 2008.
DOI : 10.1074/jbc.M106960200

M. Kvist, V. Hancock, and P. Klemm, Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation, Applied and Environmental Microbiology, vol.74, issue.23, pp.7376-82, 2008.
DOI : 10.1128/AEM.01310-08

C. Kint, N. Verstraeten, M. Fauvart, and J. Michiels, New-found fundamentals of bacterial persistence, Trends in Microbiology, vol.20, issue.12, pp.577-85, 2012.
DOI : 10.1016/j.tim.2012.08.009

D. Kell and M. Young, Bacterial dormancy and culturability: the role of autocrine growth factors Commentary, Current Opinion in Microbiology, vol.3, issue.3, pp.238-281, 2000.
DOI : 10.1016/S1369-5274(00)00082-5

N. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial Persistence as a Phenotypic Switch, Science, vol.305, issue.5690, pp.1622-1627, 2004.
DOI : 10.1126/science.1099390

D. Shah, Z. Zhang, A. Khodursky, N. Kaldalu, K. Kurg et al., Persisters: a distinct physiological state of E. coli, BMC Microbiology, vol.6, issue.1, p.53, 2006.
DOI : 10.1186/1471-2180-6-53

M. Orman and M. Brynildsen, Establishment of a Method To Rapidly Assay Bacterial Persister Metabolism, Antimicrobial Agents and Chemotherapy, vol.57, issue.9, 2013.
DOI : 10.1128/AAC.00372-13

F. Hayes and L. Van-melderen, Toxins-antitoxins: diversity, evolution and function, Critical Reviews in Biochemistry and Molecular Biology, vol.187, issue.5, pp.386-408, 2011.
DOI : 10.1074/jbc.M110.163105

Y. Yamaguchi, J. Park, and M. Inouye, Toxin-Antitoxin Systems in Bacteria and Archaea, Annual Review of Genetics, vol.45, issue.1, pp.61-79, 2011.
DOI : 10.1146/annurev-genet-110410-132412

T. Falla and I. Chopra, Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA, Antimicrob Agents Chemother, vol.42, pp.3282-3286, 1998.

I. Keren, N. Kaldalu, A. Spoering, Y. Wang, and K. Lewis, Persister cells and tolerance to antimicrobials, FEMS Microbiology Letters, vol.230, issue.1, pp.13-21, 2004.
DOI : 10.1016/S0378-1097(03)00856-5

I. Kaspy, E. Rotem, N. Weiss, I. Ronin, N. Balaban et al., HipAmediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase, Nat Commun, vol.4, p.3001, 2013.

M. Schumacher, K. Piro, W. Xu, S. Hansen, K. Lewis et al., Molecular Mechanisms of HipA-Mediated Multidrug Tolerance and Its Neutralization by HipB, Science, vol.323, issue.5912, pp.396-401, 2009.
DOI : 10.1126/science.1163806

I. Keren, D. Shah, A. Spoering, N. Kaldalu, and K. Lewis, Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli, Journal of Bacteriology, vol.186, issue.24, pp.8172-80, 2004.
DOI : 10.1128/JB.186.24.8172-8180.2004

X. Wang, D. Lord, and H. Cheng, A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS, Nature Chemical Biology, vol.57, issue.10, pp.855-61, 2013.
DOI : 10.1002/bit.20681

URL : https://hal.archives-ouvertes.fr/hal-00955874

N. Vega, K. Allison, A. Khalil, and J. Collins, Signaling-mediated bacterial persister formation, Nature Chemical Biology, vol.102, issue.5, pp.431-434, 2012.
DOI : 10.1073/pnas.1004333107

Z. Dalebroux and M. Swanson, ppGpp: magic beyond RNA polymerase, Nature Reviews Microbiology, vol.71, issue.3, pp.203-215, 2012.
DOI : 10.1038/nrmicro2720

K. Gerdes and E. Maisonneuve, Bacterial Persistence and Toxin-Antitoxin Loci, Annual Review of Microbiology, vol.66, issue.1, pp.103-126, 2012.
DOI : 10.1146/annurev-micro-092611-150159

E. Maisonneuve, L. Shakespeare, M. Jorgensen, and K. Gerdes, Bacterial persistence by RNA endonucleases, Proceedings of the National Academy of Sciences, vol.108, issue.32, pp.13206-13217, 2011.
DOI : 10.1073/pnas.1100186108

T. Dorr, K. Lewis, and M. Vulic, SOS Response Induces Persistence to Fluoroquinolones in Escherichia coli, PLoS Genetics, vol.178, issue.12, p.1000760, 2009.
DOI : 10.1371/journal.pgen.1000760.t001

T. Dorr, M. Vulic, and K. Lewis, Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in Escherichia coli, PLoS Biology, vol.183, issue.2, p.1000317, 2010.
DOI : 10.1371/journal.pbio.1000317.s001

I. Keren, Y. Wu, J. Inocencio, L. Mulcahy, and K. Lewis, Killing by Bactericidal Antibiotics Does Not Depend on Reactive Oxygen Species, Science, vol.339, issue.6124, pp.1213-1219, 2013.
DOI : 10.1126/science.1232688

M. Kohanski, D. Dwyer, B. Hayete, C. Lawrence, and J. Collins, A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics, Cell, vol.130, issue.5, pp.797-810, 2007.
DOI : 10.1016/j.cell.2007.06.049

Y. Liu and J. Imlay, Cell Death from Antibiotics Without the Involvement of Reactive Oxygen Species, Science, vol.339, issue.6124, pp.1210-1213, 2013.
DOI : 10.1126/science.1232751

Y. Wu, M. Vulic, I. Keren, and K. Lewis, Role of Oxidative Stress in Persister Tolerance, Antimicrobial Agents and Chemotherapy, vol.56, issue.9, pp.4922-4928, 2012.
DOI : 10.1128/AAC.00921-12

K. Shatalin, E. Shatalina, A. Mironov, and E. Nudler, H2S: A Universal Defense Against Antibiotics in Bacteria, Science, vol.334, issue.6058, pp.986-90, 2011.
DOI : 10.1126/science.1209855

M. Kaern, T. Elston, W. Blake, and J. Collins, Stochasticity in gene expression: from theories to phenotypes, Nature Reviews Genetics, vol.8706, issue.6, pp.451-64, 2005.
DOI : 10.1073/pnas.0400673101

W. Zimmerli and C. Moser, Pathogenesis and treatment concepts of orthopaedic biofilm infections, FEMS Immunology & Medical Microbiology, vol.65, issue.2, pp.158-68, 2012.
DOI : 10.1111/j.1574-695X.2012.00938.x

H. Busscher, H. Van-der-mei, and G. Subbiahdoss, Biomaterialassociated infection: locating the finish line in the race for the surface, Sci Transl Med, vol.4, pp.153-110, 2012.

D. Campoccia, L. Montanaro, and C. Arciola, A review of the clinical implications of anti-infective biomaterials and??infection-resistant surfaces, Biomaterials, vol.34, issue.33, pp.8018-8047, 2013.
DOI : 10.1016/j.biomaterials.2013.07.048

O. Toole and G. , Microbiology: Jekyll or hide?, Nature, vol.51, issue.7018, pp.680-681, 2004.
DOI : 10.1128/JB.186.17.5692-5698.2004

P. Chaignon, I. Sadovskaya, C. Ragunah, N. Ramasubbu, J. Kaplan et al., Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition, Applied Microbiology and Biotechnology, vol.65, issue.1, pp.125-157, 2007.
DOI : 10.1007/s00253-006-0790-y

S. Hymes, T. Randis, T. Sun, and A. Ratner, DNase Inhibits Gardnerella vaginalis Biofilms In Vitro and In Vivo, Journal of Infectious Diseases, vol.207, issue.10, pp.1491-1498, 2013.
DOI : 10.1093/infdis/jit047

E. Izano, M. Amarante, W. Kher, and J. Kaplan, Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms, Applied and Environmental Microbiology, vol.74, issue.2, pp.470-476, 2008.
DOI : 10.1128/AEM.02073-07

B. Boles and A. Horswill, agr-Mediated Dispersal of Staphylococcus aureus Biofilms, PLoS Pathogens, vol.70, issue.10, p.1000052, 2008.
DOI : 10.1371/journal.ppat.1000052.s001

J. Huang and K. Pinder, Effects of calcium on development of anaerobic acidogenic biofilms, Biotechnology and Bioengineering, vol.41, issue.3, pp.212-220, 1995.
DOI : 10.1002/bit.260450305

M. Turakhia and W. Characklis, Activity ofPseudomonas aeruginosa in biofilms: Effect of calcium, Biotechnology and Bioengineering, vol.186, issue.4, pp.406-420, 1989.
DOI : 10.1002/bit.260330405

E. Banin, K. Brady, and E. Greenberg, Chelator-Induced Dispersal and Killing of Pseudomonas aeruginosa Cells in a Biofilm, Applied and Environmental Microbiology, vol.72, issue.3, pp.2064-2073, 2006.
DOI : 10.1128/AEM.72.3.2064-2069.2006

A. Chauhan, D. Lebeaux, J. Ghigo, and C. Beloin, Full and broadspectrum in vivo eradication of catheter-associated biofilms using gentamicin-EDTA antibiotic lock therapy, Antimicrob Agents Chemother, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01126606

K. Allison, M. Brynildsen, and J. Collins, Metabolite-enabled eradication of bacterial persisters by aminoglycosides, Nature, vol.31, issue.7346, pp.216-236, 2011.
DOI : 10.1038/nature10069

J. Morones-ramirez, J. Winkler, C. Spina, and J. Collins, Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria, Science Translational Medicine, vol.5, issue.190, pp.190-181, 2013.
DOI : 10.1126/scitranslmed.3006276

B. Conlon, E. Nakayasu, and L. Fleck, Activated ClpP kills persisters and eradicates a chronic biofilm infection, Nature, vol.15, issue.7476, pp.365-70, 2013.
DOI : 10.1038/nature12790