D. B. Gammon and C. C. Mello, RNA interference-mediated antiviral defense in insects, Current Opinion in Insect Science, vol.8, pp.111-120, 2015.
DOI : 10.1016/j.cois.2015.01.006

Z. N. Adelman, C. D. Blair, J. O. Carlson, B. J. Beaty, and K. E. Olson, Sindbis virus-induced silencing of dengue viruses in mosquitoes, Insect Molecular Biology, vol.101, issue.1, pp.265-273, 2001.
DOI : 10.1046/j.1365-2583.2001.00267.x

Z. N. Adelman, RNA Silencing of Dengue Virus Type 2 Replication in Transformed C6/36 Mosquito Cells Transcribing an Inverted-Repeat RNA Derived from the Virus Genome, Journal of Virology, vol.76, issue.24, pp.12925-12933, 2002.
DOI : 10.1128/JVI.76.24.12925-12933.2002

G. Carissimo, Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota, Proc. Natl Acad. Sci. USA, pp.176-185, 2015.

E. M. Morazzani, M. R. Wiley, M. G. Murreddu, Z. N. Adelman, and K. M. Myles, Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma, PLoS Pathogens, vol.38, issue.1, p.1002470, 2012.
DOI : 10.1371/journal.ppat.1002470.s005

S. Sim, N. Jupatanakul, and G. Dimopoulos, Mosquito Immunity against Arboviruses, Viruses, vol.6, issue.11, pp.4479-4504, 2014.
DOI : 10.3390/v6114479

R. W. Siu, Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small Interfering RNAs, Journal of Virology, vol.85, issue.6, pp.2907-2917, 2011.
DOI : 10.1128/JVI.02052-10

N. Vodovar, Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells, PLoS ONE, vol.14, issue.1, p.30861, 2012.
DOI : 10.1371/journal.pone.0030861.t001

URL : https://hal.archives-ouvertes.fr/pasteur-01379361

E. Schnettler, Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, Journal of General Virology, vol.94, issue.Pt_7, pp.1680-1689, 2013.
DOI : 10.1099/vir.0.053850-0

P. Leger, Dicer-2- and Piwi-Mediated RNA Interference in Rift Valley Fever Virus-Infected Mosquito Cells, Journal of Virology, vol.87, issue.3, pp.1631-1648, 2013.
DOI : 10.1128/JVI.02795-12

P. Miesen, E. Girardi, and R. P. Van-rij, mosquito cells, Nucleic Acids Research, vol.43, issue.13, pp.6545-6556, 2015.
DOI : 10.1093/nar/gkv590

URL : https://hal.archives-ouvertes.fr/pasteur-01379361

R. P. Van-rij, The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster, Genes & Development, vol.20, issue.21, pp.2985-2995, 2006.
DOI : 10.1101/gad.1482006

J. Brennecke, An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing, Science, vol.322, issue.5906, pp.1387-1392, 2008.
DOI : 10.1126/science.1165171

V. V. Vagin, A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline, Science, vol.313, issue.5785, pp.320-324, 2006.
DOI : 10.1126/science.1129333

R. Medzhitov, D. S. Schneider, and M. P. Soares, Disease Tolerance as a Defense Strategy, Science, vol.335, issue.6071, pp.936-941, 2012.
DOI : 10.1126/science.1214935

J. S. Ayres and D. S. Schneider, Tolerance of Infections, Annual Review of Immunology, vol.30, issue.1, pp.271-294, 2012.
DOI : 10.1146/annurev-immunol-020711-075030

M. Moreno-garcia, R. Conde, R. Bello-bedoy, and H. Lanz-mendoza, The damage threshold hypothesis and the immune strategies of insects, Infection, Genetics and Evolution, vol.24, pp.25-33, 2014.
DOI : 10.1016/j.meegid.2014.02.010

L. Raberg, A. L. Graham, and A. Read, Decomposing health: tolerance and resistance to parasites in animals, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.32, issue.4, pp.37-49, 2009.
DOI : 10.1038/ng1202-569

D. Carval and R. Ferriere, A UNIFIED MODEL FOR THE COEVOLUTION OF RESISTANCE, TOLERANCE, AND VIRULENCE, Evolution, vol.32, pp.2988-3009, 2010.
DOI : 10.1111/j.1558-5646.2010.01035.x

D. S. Schneider and J. S. Ayres, Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases, Nature Reviews Immunology, vol.155, issue.11, pp.889-895, 2008.
DOI : 10.1038/nri2432

E. J. Fuchs, J. P. Ridge, and P. Matzinger, Response: Immunological Tolerance, Science, vol.272, issue.5267, pp.1406-1408, 1996.
DOI : 10.1126/science.272.5267.1406

B. P. Lazzaro, J. Rolff, and . Immunology, Danger, Microbes, and Homeostasis, Science, vol.332, issue.6025, pp.43-44, 2011.
DOI : 10.1126/science.1200486

E. L. Cooper, Evolution of immune systems from self/not self to danger to artificial immune systems (AIS), Physics of Life Reviews, vol.7, issue.1, pp.55-78, 2010.
DOI : 10.1016/j.plrev.2009.12.001

B. Goic, RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila, Nature Immunology, vol.721, issue.4, pp.396-403, 2013.
DOI : 10.1126/science.1129333

D. E. Brackney, C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response, PLoS Neglected Tropical Diseases, vol.36, issue.7, p.856, 2010.
DOI : 10.1371/journal.pntd.0000856.t001

M. B. Kingsolver, Z. Huang, and R. W. Hardy, Insect Antiviral Innate Immunity: Pathways, Effectors, and Connections, Journal of Molecular Biology, vol.425, issue.24, pp.4921-4936, 2013.
DOI : 10.1016/j.jmb.2013.10.006

S. S. Soldan, M. L. Plassmeyer, M. K. Matukonis, and F. Gonzalez-scarano, La Crosse Virus Nonstructural Protein NSs Counteracts the Effects of Short Interfering RNA, Journal of Virology, vol.79, issue.1, pp.234-244, 2005.
DOI : 10.1128/JVI.79.1.234-244.2005

K. W. Van-cleef, J. T. Van-mierlo, M. Van-den-beek, and R. P. Van-rij, Identification of Viral Suppressors of RNAi by a Reporter Assay in Drosophila S2 Cell Culture, Methods Mol. Biol, vol.721, pp.201-213, 2011.
DOI : 10.1007/978-1-61779-037-9_12

J. Kean, Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes, Insects, vol.6, issue.1, pp.236-278, 2015.
DOI : 10.3390/insects6010236

A. F. Read, P. A. Lynch, and M. B. Thomas, How to Make Evolution-Proof Insecticides for Malaria Control, PLoS Biology, vol.12, issue.4, p.1000058, 2009.
DOI : 10.1371/journal.pbio.1000058.sd003

L. D. Condreay and D. T. Brown, Exclusion of superinfecting homologous virus by Sindbis virus-infected Aedes albopictus (mosquito) cells, J. Virol, vol.58, pp.81-86, 1986.

Q. Lan and A. M. Fallon, Small heat shock proteins distinguish between two mosquito species and confirm identity of their cell lines, Am. J. Trop. Med. Hyg, vol.43, pp.669-676, 1990.

L. L. Coffey and M. Vignuzzi, Host Alternation of Chikungunya Virus Increases Fitness while Restricting Population Diversity and Adaptability to Novel Selective Pressures, Journal of Virology, vol.85, issue.2, pp.1025-1035, 2011.
DOI : 10.1128/JVI.01918-10

URL : https://hal.archives-ouvertes.fr/pasteur-00546712

T. Fansiri, Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses, PLoS Genetics, vol.27, issue.8, p.1003621, 2013.
DOI : 10.1371/journal.pgen.1003621.s014

URL : https://hal.archives-ouvertes.fr/pasteur-00854586

V. Gausson and M. C. Saleh, Viral Small RNA Cloning and Sequencing, Methods Mol. Biol, vol.721, pp.107-122, 2011.
DOI : 10.1007/978-1-61779-037-9_6

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, issue.1, pp.10-12, 2011.
DOI : 10.14806/ej.17.1.200

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 2009.
DOI : 10.1093/bioinformatics/btp352

C. Baron, I. Conclois, C. Lallemand, . Help, and . Vincent-raquin, Albin Fontaine and the Centre for Production and Infection of Anopheles (CEPIA) for help in rabbit blood collection We are grateful to Karima Zouache for providing the Ae. albopictus colony and to Alongkot Ponlawat for the original field sampling of the Ae. aegypti colony. This work was supported by the European Research Council (FP7/2007?2013 ERC StG 242703 and FP7/2013?2019 ERC CoG 615220) and the French Government's Investissement d'Avenir programme, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID) to M.C.S. Salary for K.A.S. was supported by a 'Equipe FRM DEQ20150331759' grant from the French Fondation pour la Recherche Médicale to, V. received support from DIM Ile-de-France programme on Infectious Diseases. L.L. received support form the City of Paris Emergence(s) Program in Biomedical Research. Work in the laboratory of G.C. was supported by the French Government (National Research Agency, ANR) through the 'Investments for the Future' (LABEX SIGNALIFE, no. ANR-11-LABX-0028- 01) and by CNRS