D. Kaur, M. E. Guerin, H. Skovierová, P. J. Brennan, J. et al., Chapter 2 Biogenesis of the Cell Wall and Other Glycoconjugates of Mycobacterium tuberculosis, Adv. Appl. Microbiol, vol.69, pp.23-78, 2009.
DOI : 10.1016/S0065-2164(09)69002-X

M. E. Guerin, J. Korduláková, P. M. Alzari, P. J. Brennan, J. et al., Molecular Basis of Phosphatidyl-myo-inositol Mannoside Biosynthesis and Regulation in Mycobacteria, Journal of Biological Chemistry, vol.285, issue.44, pp.33577-33583, 2010.
DOI : 10.1074/jbc.R110.168328

Y. S. Morita, T. Fukuda, C. B. Sena, Y. Yamaryo-botte, M. J. Mcconville et al., Inositol lipid metabolism in mycobacteria: Biosynthesis and regulatory mechanisms, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1810, issue.6, pp.630-641, 1810.
DOI : 10.1016/j.bbagen.2011.03.017

J. Korduláková, M. Gilleron, K. Mikusova, G. Puzo, P. J. Brennan et al., Definition of the First Mannosylation Step in Phosphatidylinositol Mannoside Synthesis. PimA IS ESSENTIAL FOR GROWTH OF MYCOBACTERIA, Journal of Biological Chemistry, vol.277, issue.35, pp.31335-31344, 2002.
DOI : 10.1074/jbc.M204060200

F. Boldrin, M. Ventura, G. Degiacomi, S. Ravishankar, C. Sala et al., The Phosphatidyl-myo-Inositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth In Vitro and In Vivo, Journal of Bacteriology, vol.196, issue.19, pp.3441-3451, 2014.
DOI : 10.1128/JB.01346-13

M. E. Guerin, D. Kaur, B. S. Somashekar, S. Gibbs, P. Gest et al., New Insights into the Early Steps of Phosphatidylinositol Mannoside Biosynthesis in Mycobacteria: PimB' IS AN ESSENTIAL ENZYME OF MYCOBACTERIUM SMEGMATIS, Journal of Biological Chemistry, vol.284, issue.38, pp.25687-25696, 2009.
DOI : 10.1074/jbc.M109.030593

D. Albesa-jové, D. Giganti, M. Jackson, P. M. Alzari, and M. E. Guerin, Structure-function relationships of membrane-associated GT-B glycosyltransferases, Glycobiology, vol.24, issue.2, pp.108-124, 2014.
DOI : 10.1093/glycob/cwt101

P. Burn, Talking point Amphitropic proteins: a new class of membrane proteins, Trends in Biochemical Sciences, vol.13, issue.3, pp.79-83, 1988.
DOI : 10.1016/0968-0004(88)90043-6

M. E. Guerin, A. Buschiazzo, J. Korduláková, M. Jackson, A. et al., Crystallization and preliminary crystallographic analysis of PimA, an essential mannosyltransferase from Mycobacterium smegmatis, 2005.

M. E. Guerin, J. Kordulakova, F. Schaeffer, Z. Svetlikova, A. Buschiazzo et al., Molecular Recognition and Interfacial Catalysis by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria, Journal of Biological Chemistry, vol.282, issue.28, pp.20705-20714, 2007.
DOI : 10.1074/jbc.M702087200

D. Giganti, D. Albesa-jové, S. Urresti, A. Rodrigo-unzueta, M. A. Martínez et al., Secondary structure reshuffling modulates glycosyltransferase function at the membrane, Nature Chemical Biology, vol.66, issue.1, pp.16-18, 2015.
DOI : 10.1107/S0021889895007047

URL : https://hal.archives-ouvertes.fr/pasteur-01408804

F. Brodhun and K. Tittmann, Membrane enzymes: Transformers at the interface, Nature Chemical Biology, vol.11, issue.2, pp.102-103, 2015.
DOI : 10.1038/nature06407

M. E. Guerin, F. Schaeffer, A. Chaffotte, P. Gest, D. Giganti et al., Substrate-induced Conformational Changes in the Essential Peripheral Membrane-associated Mannosyltransferase PimA from Mycobacteria: IMPLICATIONS FOR CATALYSIS, Journal of Biological Chemistry, vol.284, issue.32, pp.21613-21625, 2009.
DOI : 10.1074/jbc.M109.003947

URL : https://hal.archives-ouvertes.fr/pasteur-00512066

D. Giganti, J. Alegre-cebollada, S. Urresti, D. Albesa-jové, A. Rodrigo-unzueta et al., Conformational Plasticity of the Essential Membrane-associated Mannosyltransferase PimA from Mycobacteria, Journal of Biological Chemistry, vol.288, issue.41, pp.29797-29808, 2013.
DOI : 10.1074/jbc.M113.462705

M. J. Rebecchi, R. Eberhardt, T. Delaney, S. Ali, and R. Bittman, Hydrolysis of short acyl chain inositol lipids by phospholipase C-1, J. Biol. Chem, vol.268, pp.1735-1741, 1993.

M. Lindeberg, S. D. Zakharov, and W. A. Cramer, Unfolding pathway of the colicin E1 channel protein on a membrane surface 1 1Edited by I. B. Holland, Journal of Molecular Biology, vol.295, issue.3, pp.679-692, 2000.
DOI : 10.1006/jmbi.1999.3396

K. Mosbahi, D. Walker, E. Lea, G. R. Moore, R. James et al., Destabilization of the Colicin E9 Endonuclease Domain by Interaction with Negatively Charged Phospholipids, Journal of Biological Chemistry, vol.279, issue.21, pp.22145-22151, 2004.
DOI : 10.1074/jbc.M400402200

J. C. Karst, R. Barker, U. Devi, M. J. Swann, M. Davi et al., Identification of a Region That Assists Membrane Insertion and Translocation of the Catalytic Domain of Bordetella pertussis CyaA Toxin, Journal of Biological Chemistry, vol.287, issue.12, pp.9200-9212, 2012.
DOI : 10.1074/jbc.M111.316166

URL : https://hal.archives-ouvertes.fr/pasteur-01423063

S. A. Seidel, P. M. Dijkman, W. A. Lea, G. Van-den-bogaart, M. Jerabek-willemsen et al., Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions, Methods, vol.59, issue.3, pp.301-315, 2013.
DOI : 10.1016/j.ymeth.2012.12.005

URL : http://doi.org/10.1016/j.ymeth.2012.12.005

V. E. Bychkova, R. H. Pain, and O. B. Ptitsyn, The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett, pp.231-234, 1988.

A. Chenal, G. Vernier, P. Savarin, N. A. Bushmarina, A. Gèze et al., Conformational States and Thermodynamics of ??-Lactalbumin Bound to Membranes: A Case Study of the Effects of pH, Calcium, Lipid Membrane Curvature and Charge, Journal of Molecular Biology, vol.349, issue.4, pp.890-905, 2005.
DOI : 10.1016/j.jmb.2005.04.036

URL : https://hal.archives-ouvertes.fr/hal-00384704

P. Man, C. Montagner, G. Vernier, B. Dublet, A. Chenal et al., Defining the Interacting Regions between Apomyoglobin and Lipid Membrane by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry, Journal of Molecular Biology, vol.368, issue.2, pp.464-472, 2007.
DOI : 10.1016/j.jmb.2007.02.014

URL : https://hal.archives-ouvertes.fr/hal-01186621

Ø. Halskau, A. Muga, and A. Martínez, Linking New Paradigms in Protein Chemistry to Reversible Membrane-Protein Interactions, Current Protein & Peptide Science, vol.10, issue.4, pp.339-359, 2009.
DOI : 10.2174/138920309788922199

O. Subrini, A. C. Sotomayor-pérez, A. Hessel, J. Spiaczka-karst, E. Selwa et al., Characterization of a Membrane-active Peptide from the Bordetella pertussis CyaA Toxin, Journal of Biological Chemistry, vol.288, issue.45, pp.32585-32598, 2013.
DOI : 10.1074/jbc.M113.508838

URL : https://hal.archives-ouvertes.fr/hal-00937043

S. H. White and W. C. Wimley, MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles, Annual Review of Biophysics and Biomolecular Structure, vol.28, issue.1, pp.319-365, 1999.
DOI : 10.1146/annurev.biophys.28.1.319

J. E. Johnson, C. , and R. B. , Amphitropic proteins: regulation by reversible membrane interactions (Review), Molecular Membrane Biology, vol.271, issue.3, pp.217-235, 1999.
DOI : 10.1074/jbc.271.39.23815

R. Schwartz, C. S. Ting, and J. King, Whole Proteome pI Values Correlate with Subcellular Localizations of Proteins for Organisms within the Three Domains of Life, Genome Research, vol.11, issue.5, pp.703-709, 2001.
DOI : 10.1101/gr.GR-1587R

M. Edman, S. Berg, P. Storm, M. Wikström, S. Vikström et al., Structural Features of Glycosyltransferases Synthesizing Major Bilayer and Nonbilayer-prone Membrane Lipids in Acholeplasma laidlawii and Streptococcus pneumoniae, Journal of Biological Chemistry, vol.278, issue.10, pp.8420-8428, 2003.
DOI : 10.1074/jbc.M211492200

C. Ge, A. Georgiev, A. O-¨-hman, Å. Wieslander, and A. A. Kelly, Tryptophan Residues Promote Membrane Association for a Plant Lipid Glycosyltransferase Involved in Phosphate Stress, Journal of Biological Chemistry, vol.286, issue.8, pp.6669-6684, 2011.
DOI : 10.1074/jbc.M110.138495

J. Rocha, J. Sarkis, A. Thomas, L. Pitou, J. Radzimanowski et al., Structural insights and membrane binding properties of MGD1, the major galactolipid synthase in plants, The Plant Journal, vol.67, issue.5, pp.622-633, 2016.
DOI : 10.1107/S0907444910045749

URL : https://hal.archives-ouvertes.fr/hal-01272198

A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero et al., Intrinsically disordered protein, Journal of Molecular Graphics and Modelling, vol.19, issue.1, pp.26-59, 2001.
DOI : 10.1016/S1093-3263(00)00138-8

H. J. Dyson, W. , and P. E. , Intrinsically unstructured proteins and their functions, Nature Reviews Molecular Cell Biology, vol.278, issue.3, pp.197-208, 2005.
DOI : 10.1126/science.7754375

A. Muga, H. H. Mantsch, and W. K. Surewicz, Membrane binding induces destabilization of cytochrome c structure, Biochemistry, vol.30, issue.29, pp.7219-7224, 1991.
DOI : 10.1021/bi00243a025

T. Heimburg and D. Marsh, Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study, Biophysical Journal, vol.65, issue.6, pp.2408-2417, 1993.
DOI : 10.1016/S0006-3495(93)81299-2

A. Chenal, P. Savarin, P. Nizard, F. Guillain, D. Gillet et al., Membrane Protein Insertion Regulated by Bringing Electrostatic and Hydrophobic Interactions into Play. A CASE STUDY WITH THE TRANSLOCATION DOMAIN OF THE DIPHTHERIA TOXIN, Journal of Biological Chemistry, vol.277, issue.45, pp.43425-43432, 2002.
DOI : 10.1074/jbc.M204148200

A. Chenal, L. Prongidi-fix, A. Perier, C. Aisenbrey, G. Vernier et al., Deciphering Membrane Insertion of the Diphtheria Toxin T Domain by Specular Neutron Reflectometry and Solid-State NMR Spectroscopy, Journal of Molecular Biology, vol.391, issue.5, pp.872-883, 2009.
DOI : 10.1016/j.jmb.2009.06.061

URL : https://hal.archives-ouvertes.fr/hal-01151673